[1]
Amziane, S., Sonebi, M., 2016. Overview on bio-based building material made with plant aggregate Overview on bio-based building material made with plant aggregate 31–38.
DOI: 10.21809/rilemtechlett.2016.9
Google Scholar
[2]
Arrigoni, A., Pelosato, R., Melià, P., Ruggieri, G., Sabbadini, S., Dotelli, G., 2017. Life cycle assessment of natural building materials: the role of carbonation, mixture components and transport in the environmental impacts of hempcrete blocks. J. Clean. Prod. 149, 1051–1061. https://doi.org/10.1016/j.jclepro.2017.02.161.
DOI: 10.1016/j.jclepro.2017.02.161
Google Scholar
[3]
Brazilian Association of Technical Standards, 2005. Mortars applied on walls and ceilings - Determination of the specific gravity in the hardened stage: NBR 13280. Rio de Janeiro.
Google Scholar
[4]
Caldas, L.R., Carvalho, M.T.M., Toledo Filho, R.D., 2020a. Avaliação de estratégias para a mitigação dos impactos ambientais de revestimentos argamassados no Brasil 20, 343–362.
DOI: 10.1590/s1678-86212020000300433
Google Scholar
[5]
Caldas, L.R., Da Gloria, M.Y.R., Pittau, F., Andreola, V.M., Habert, G., Toledo Filho, R.D., 2020b. Environmental impact assessment of wood bio-concretes: Evaluation of the influence of different supplementary cementitious materials. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2020.121146.
DOI: 10.1016/j.conbuildmat.2020.121146
Google Scholar
[6]
Caldas, L.R., Paiva, R. de L.M., Martins, A.P. de S., Toledo Filho, R.D., 2020c. Argamassas de terra versus convencionais: avaliação do desempenho ambiental considerando o ciclo de vida. Mix Sustentável 6, 115–128.
DOI: 10.29183/2447-3073.mix2020.v6.n4.115-128
Google Scholar
[7]
Caldas, L.R., Saraiva, A.B., Andreola, V.M., Dias, R., Filho, T., 2020d. Bamboo bio-concrete as an alternative for buildings ' climate change mitigation and adaptation. Constr. Build. Mater. 263, 120652. https://doi.org/10.1016/j.conbuildmat.2020.120652.
DOI: 10.1016/j.conbuildmat.2020.120652
Google Scholar
[8]
Dolezal, F., Hill, C.A.S., Escamilla, E.Z., 2017. i Forest. https://doi.org/10.3832/ifor2386-010.
Google Scholar
[9]
EN, 2012. EN 15804:2012 + A2:2019 - Sustainability of construction works — Environmental product declarations — Core rules for the product category of construction products. Int. Stand.
DOI: 10.3403/30259256
Google Scholar
[10]
Faria, P., Dias, I., Jamú, N., Silva, V., 2014. Air lime-earth blended mortars-assessment on fresh state and workability. Earthen Archit. Past, Present Futur. 133–138. https://doi.org/10.1201/b17392.
DOI: 10.1201/b17392-26
Google Scholar
[11]
Gomes, M.I., Faria, P., Gonçalves, T.D., 2018. Earth-based mortars for repair and protection of rammed earth walls. Stabilization with mineral binders and fibers. J. Clean. Prod. 172, 2401–2414. https://doi.org/10.1016/j.jclepro.2017.11.170.
DOI: 10.1016/j.jclepro.2017.11.170
Google Scholar
[12]
González Mahecha, R.E., Caldas, L.R., Garaffa, R., Lucena, A.F.P., Szklo, A., Toledo Filho, R.D., 2020. Constructive systems for social housing deployment in developing countries: a case study using dynamic life cycle carbon assessment and cost analysis in Brazil. Energy Build. 227, 110395. https://doi.org/10.1016/j.enbuild.2020.110395.
DOI: 10.1016/j.enbuild.2020.110395
Google Scholar
[13]
Guest, G., Cherubini, F., Strømman, A.H., 2012. Global Warming Potential of Carbon Dioxide Emissions from Biomass Stored in the Anthroposphere and Used for Bioenergy at End of Life 17. https://doi.org/10.1111/j.1530-9290.2012.00507.x.
DOI: 10.1111/j.1530-9290.2012.00507.x
Google Scholar
[14]
Hamard, E., Cazacliu, B., Razakamanantsoa, A., Morel, J.C., 2016. Cob, a vernacular earth construction process in the context of modern sustainable building. Build. Environ. https://doi.org/10.1016/j.buildenv.2016.06.009.
DOI: 10.1016/j.buildenv.2016.06.009
Google Scholar
[15]
ISO, 2006. 14040: Environmental management–life cycle assessment—Principles and framework. Int. Organ. Stand.
Google Scholar
[16]
Lagerblad, B., 2005. Carbon dioxide uptake during concrete life cycle: state of the art.
Google Scholar
[17]
PBMC, 2018. Role of Bio-based Building Materials in Climate Change Mitigation: Special Report of the Brazilian Panel on Climate Change. Rio de Janeiro.
Google Scholar
[18]
Pittau, F., Krause, F., Lumia, G., Habert, G., 2018. Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Build. Environ. 129, 117–129. https://doi.org/10.1016/j.buildenv.2017.12.006.
DOI: 10.1016/j.buildenv.2017.12.006
Google Scholar
[19]
Publication, B.S.I.S., 2014. PD CEN ISO / TS 14067 : 2014 BSI Standards Publication Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification and communication ( ISO / TS.
DOI: 10.3403/30244913
Google Scholar
[20]
Röck, M., Saade, M.R.M., Balouktsi, M., Rasmussen, F.N., Birgisdottir, H., Frischknecht, R., Habert, G., Lützkendorf, T., Passer, A., 2020. Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation. Appl. Energy. https://doi.org/10.1016/j.apenergy.2019.114107.
DOI: 10.1016/j.apenergy.2019.114107
Google Scholar
[21]
Röhlen, U., Ziegert, C., 2011. Earth Building Practice, 1st ed. Bauwerk-Beuth Verlag, Berlin.
Google Scholar
[22]
Santos, T., Nunes, L., Faria, P., 2018. Production of eco-efficient earth-based plasters: Influence of composition on physical performance and bio-susceptibility. J. Clean. Prod. 167, 55–67. https://doi.org/10.1016/j.jclepro.2017.08.131.
DOI: 10.1016/j.jclepro.2017.08.131
Google Scholar
[23]
Satola, D., Houlihan-wiberg, A., Gustavsen, A., 2021. Life Cycle GHG Emissions of Residential Buildings in Humid Subtropical and Tropical Climates : Systematic Review and Analysis.
DOI: 10.3390/buildings11010006
Google Scholar
[24]
UNEP, 2019. Global Status Report for Buildings and Construction. Towards a zero-emissions, effi cient and resilient buildings and constructi on sector.
Google Scholar
[25]
Viel, M., Collet, F., Lanos, C., 2018. Chemical and multi-physical characterization of agro-resources' by-product as a possible raw building material. Ind. Crops Prod. https://doi.org/10.1016/j.indcrop.2018.04.025.
DOI: 10.1016/j.indcrop.2018.04.025
Google Scholar
[26]
Zea Escamilla, E., Habert, G., 2014. Environmental impacts of bamboo-based construction materials representing global production diversity. J. Clean. Prod. 69, 117–127. https://doi.org/10.1016/j.jclepro.2014.01.067.
DOI: 10.1016/j.jclepro.2014.01.067
Google Scholar