[1]
Achenza, M., Fenu, L., 2006. On Earth Stabilization with Natural Polymers for Earth Masonry Construction. Mater Struct 39, 21–27. https://doi.org/10.1617/s11527-005-9000-0.
DOI: 10.1617/s11527-005-9000-0
Google Scholar
[2]
ADEME, 2017. Rapport : Déchets, Chiffres Clés, Décembre (2017).
Google Scholar
[3]
Anger, R., 2011. Approche granulaire et colloïdale du matériau terre pour la construction (thesis). http://www.theses.fr. Lyon, INSA.
Google Scholar
[4]
Aubert, J.E., Maillard, P., Morel, J.C., Al Rafii, M., 2016. Towards a simple compressive strength test for earth bricks? Mater Struct 49, 1641–1654. https://doi.org/10.1617/s11527-015-0601-y.
DOI: 10.1617/s11527-015-0601-y
Google Scholar
[5]
Banakinao, S., Tiem, S., Lolo, K., Koutsawa, Y., Bedja, K.-S., 2016. Dataset of the use of tannin of néré (parkia-biglobosa) as a solution for the sustainability of the soil constructions in West Africa. Data in Brief 8, 474–483. https://doi.org/10.1016/j.dib.2016.05.072.
DOI: 10.1016/j.dib.2016.05.072
Google Scholar
[6]
Beckett, C.T.S., Jaquin, P.A., Morel, J.-C., 2020. Weathering the storm: A framework to assess the resistance of earthen structures to water damage. Construction and Building Materials 242, 118098. https://doi.org/10.1016/j.conbuildmat.2020.118098.
DOI: 10.1016/j.conbuildmat.2020.118098
Google Scholar
[7]
Bui, Q.-B., Morel, J.-C., Hans, S., Meunier, N., 2009. Compression behaviour of non-industrial materials in civil engineering by three scale experiments: the case of rammed earth. Mater Struct 42, 1101–1116. https://doi.org/10.1617/s11527-008-9446-y.
DOI: 10.1617/s11527-008-9446-y
Google Scholar
[8]
Chang, I., Im, J., Cho, G.-C., 2016. Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering. Sustainability 8, 251. https://doi.org/10.3390/su8030251.
DOI: 10.3390/su8030251
Google Scholar
[9]
Cytryn, S., 1956. Cytryn, S., 1956, Soil Construction, The Weizman Science Press of Israel.
Google Scholar
[10]
Dove, C.A., Bradley, F.F., Patwardhan, S.V., 2016. Seaweed biopolymers as additives for unfired clay bricks. Mater Struct 49, 4463–4482. https://doi.org/10.1617/s11527-016-0801-0.
DOI: 10.1617/s11527-016-0801-0
Google Scholar
[11]
Fitzmaurice, R., 1958. Manual on Stabilised Soil Construction for Housing,Technical Assistance Program, United Nations.
Google Scholar
[12]
Frencham, G.J., 1982. The Performance of Earth Buildings, Deakin University, Geelong, (1982).
Google Scholar
[13]
Galán-Marín, C., Rivera-Gómez, C., Petric, J., 2010. Clay-based composite stabilized with natural polymer and fibre. Construction and Building Materials 24, 1462–1468. https://doi.org/10.1016/j.conbuildmat.2010.01.008.
DOI: 10.1016/j.conbuildmat.2010.01.008
Google Scholar
[14]
Guihéneuf, Rangeard, D., Perrot, A., 2020a. Processing methods for optimising the mechanical strength of raw earth-based materials. Proceedings of the Institution of Civil Engineers - Construction Materials 1–11. https://doi.org/10.1680/jcoma.19.00115.
DOI: 10.1680/jcoma.19.00115
Google Scholar
[15]
Guihéneuf, Rangeard, D., PERROT, A., Cusin, T., Collet, F., Prétot, S., 2020b. Effect of bio-stabilizers on capillary absorption and water vapour transfer into raw earth. Materials and Structures 53. https://doi.org/10.1617/s11527-020-01571-z.
DOI: 10.1617/s11527-020-01571-z
Google Scholar
[16]
Guihéneuf, S., Rangeard, D., Perrot, A., 2019. Addition of bio based reinforcement to improve workability, mechanical properties and water resistance of earth-based materials. Academic Journal of Civil Engineering 37, 184–192. https://doi.org/10.26168/icbbm2019.26.
Google Scholar
[17]
Hafshejani, K.S., Moslemizadeh, A., Shahbazi, K., 2016. A novel bio-based deflocculant for bentonite drilling mud. Applied Clay Science 127–128, 23–34. https://doi.org/10.1016/j.clay.2016.03.037.
DOI: 10.1016/j.clay.2016.03.037
Google Scholar
[18]
Heathcote, K.A., 2002. An investigation into the erodibility of earth wall units (Thesis).
Google Scholar
[19]
Heredia Zavoni, E.A., Bariola Bernales, J.J., Neumann, J.V., Mehta, P.K., 1988. Improving the moisture resistance of adobe structures. Materials and Structures 21, 213–221. https://doi.org/10.1007/BF02473058.
DOI: 10.1007/bf02473058
Google Scholar
[20]
Ioannidou, D., Meylan, G., Sonnemann, G., Habert, G., 2017. Is gravel becoming scarce? Evaluating the local criticality of construction aggregates. Resources, Conservation and Recycling 126, 25–33. https://doi.org/10.1016/j.resconrec.2017.07.016.
DOI: 10.1016/j.resconrec.2017.07.016
Google Scholar
[21]
Khelifi, H., Lecompte, T., Perrot, A., Ausias, G., 2016. Mechanical enhancement of cement-stabilized soil by flax fibre reinforcement and extrusion processing. Mater Struct 49, 1143–1156. https://doi.org/10.1617/s11527-015-0564-z.
DOI: 10.1617/s11527-015-0564-z
Google Scholar
[22]
Landrou, G., Brumaud, C., Habert, G., 2015. Development of a self-compacted clay based concrete - rheological, mechanical and environmental investigations. Academic Journal of Civil Engineering 33, 80–84. https://doi.org/10.26168/icbbm2015.11.
DOI: 10.3218/3774-6_107
Google Scholar
[23]
Menasria, Perrot, A., Rangeard, D., Duigou, A.L., 2017a. Mechanical enhancement of casted and compacted earth-based materials by sand, flax fiber and woven fabric of flax. Academic Journal of Civil Engineering 35, 148–153. https://doi.org/10.26168/icbbm2017.22.
Google Scholar
[24]
Menasria, Perrot, A., Rangeard, D., Rennes, I., 2017b. USING ALGINATE BIOPOLYMER TO ENHANCE THE MECHANICAL PROPERTIES OF EARTH-BASED MATERIALS 7.
Google Scholar
[25]
Miccoli, L., Oliveira, D.V., Silva, R.A., Müller, U., Schueremans, L., 2015. Static behaviour of rammed earth: experimental testing and finite element modelling. Mater Struct 48, 3443–3456. https://doi.org/10.1617/s11527-014-0411-7.
DOI: 10.1617/s11527-014-0411-7
Google Scholar
[26]
Middleton, G.F., 1952. Earth-Wall Construction, Bulletin No 5, Commonwealth Experimental Building Station, Sydney.
Google Scholar
[27]
Moevus, M., Jorand, Y., Olagnon, C., Maximilien, S., Anger, R., Fontaine, L., Arnaud, L., 2015. Earthen construction: an increase of the mechanical strength by optimizing the dispersion of the binder phase. Mater Struct 49, 1555–1568. https://doi.org/10.1617/s11527-015-0595-5.
DOI: 10.1617/s11527-015-0595-5
Google Scholar
[28]
Morel, J.C., Mesbah, A., Oggero, M., Walker, P., 2001. Building houses with local materials: means to drastically reduce the environmental impact of construction. Building and Environment 36, 1119–1126. https://doi.org/10.1016/S0360-1323(00)00054-8.
DOI: 10.1016/s0360-1323(00)00054-8
Google Scholar
[29]
Morris, H., 1994. Movement of solids in air and water by raindrop impact. Effects of drop-size and water depth variations, 257–269.
DOI: 10.1071/sr9830257
Google Scholar
[30]
Nakamatsu, J., Kim, S., Ayarza, J., Ramírez, E., Elgegren, M., Aguilar, R., 2017. Eco-friendly modification of earthen construction with carrageenan: Water durability and mechanical assessment. Construction and Building Materials 139, 193–202. https://doi.org/10.1016/j.conbuildmat.2017.02.062.
DOI: 10.1016/j.conbuildmat.2017.02.062
Google Scholar
[31]
Ogunye, F.O., 1997. Rain resistance of stabilised soil blocks. (Ph.D.). University of Liverpool.
Google Scholar
[32]
Ogunye, F.O., Boussabaine, H., 2002. Development of a rainfall test rig as an aid in soil block weathering assessment. Construction and Building Materials 16, 173–180. https://doi.org/10.1016/S0950-0618(02)00010-7.
DOI: 10.1016/s0950-0618(02)00010-7
Google Scholar
[33]
Ola, S.A., Mbata, A., 1990. Durability of soil-cement for building purposes — rain erosion resistance test. Construction and Building Materials 4, 182–187. https://doi.org/10.1016/0950-0618(90)90038-3.
DOI: 10.1016/0950-0618(90)90038-3
Google Scholar
[34]
Ouedraogo, K.A.J., 2019. Stabilisation de matériaux de construction durables et écologiques à base de terre crue par des liants organiques et/ou minéraux à faibles impacts environnementaux (phd). Université de Toulouse, Université Toulouse III - Paul Sabatier.
DOI: 10.35562/balisages.979
Google Scholar
[35]
Peduzzi, P., 2014. Sand, rarer than one thinks. Environmental Development 11, 208–218. https://doi.org/10.1016/j.envdev.2014.04.001.
DOI: 10.1016/j.envdev.2014.04.001
Google Scholar
[36]
Perrot, A., Rangeard, D., Menasria, F., Guihéneuf, S., 2018. Strategies for optimizing the mechanical strengths of raw earth-based mortars. Construction and Building Materials 167, 496–504. https://doi.org/10.1016/j.conbuildmat.2018.02.055.
DOI: 10.1016/j.conbuildmat.2018.02.055
Google Scholar
[37]
Reddy, B.V.V., Jagadish, K.S., 1987. Spray erosion studies on pressed soil blocks. Building and Environment 22, 135–140. https://doi.org/10.1016/0360-1323(87)90033-3.
DOI: 10.1016/0360-1323(87)90033-3
Google Scholar
[38]
Reddy, B.V.V., Kumar, P.P., 2011. Cement stabilised rammed earth. Part B: compressive strength and stress–strain characteristics. Mater Struct 44, 695–707. https://doi.org/10.1617/s11527-010-9659-8.
DOI: 10.1617/s11527-010-9659-8
Google Scholar
[39]
Taylor, M., Tam, C., Gielen, D., 2006. Energy Efficiency and CO2 Emissions from the Global Cement Industry 13.
Google Scholar
[40]
Tripura, D.D., Singh, K.D., 2016. Behavior of cement-stabilized rammed earth circular column under axial loading. Mater Struct 49, 371–382. https://doi.org/10.1617/s11527-014-0503-4.
DOI: 10.1617/s11527-014-0503-4
Google Scholar
[41]
Van Damme, H., Houben, H., 2017. Earth concrete. Stabilization revisited. Cement and Concrete Research, Report of UNEP SBCI WORKING GROUP ON LOW-CO2 ECO-EFFICIENT CEMENT-BASED MATERIALS 114, 90–102. https://doi.org/10.1016/j.cemconres.2017.02.035.
DOI: 10.1016/j.cemconres.2017.02.035
Google Scholar
[42]
Vissac, A., Bourgès, A., Gandreau, D., Anger, R., Fontaine, L., 2017. argiles & biopolymères - les stabilisants naturels pour la construction en terre.
Google Scholar
[43]
Walker, P., Stace, T., 1997. Properties of some cement stabilised compressed earth blocks and mortars. Mat. Struct. 30, 545–551. https://doi.org/10.1007/BF02486398.
DOI: 10.1007/bf02486398
Google Scholar
[44]
Webb, T.L., Cilliers, T.F., Stutterheim, N., South African Council for Scientific and Industrial Research, National Building Research Institute (South Africa), 1950. The properties of compacted soil and soil-cement mixtures for use in building. South African Council for Scientific and Industrial Research, Pretoria [South Africa.
DOI: 10.18697/ajfand.95.18880
Google Scholar
[45]
Weisz, A., Kobe, A., McManus, A.M., Nataatmadja, A., 1995. Durability of Mudbrick – Comparison of Three Test methods. Proceeding of the 4th Australian Masonry Conference, Sydney 249–258.
Google Scholar
[46]
Wolfskill, L., 1970. Handbook for Building Homes of earth.
Google Scholar
[47]
Yttrup, P.J., Diviny, K., Sottile, F., 1981. Development of a Drip Test for the Erodibility of Mud Bricks.
Google Scholar