[1]
Allinson, D., Hall, M., 2010. Hygrothermal analysis of a stabilised rammed earth test building in the UK. Energy and Buildings 42, 845–852. https://doi.org/10.1016/j.enbuild.2009.12.005.
DOI: 10.1016/j.enbuild.2009.12.005
Google Scholar
[2]
Anger, R., Fontaine, L., Vissac, A., Couvreur, L., Moevus, M., Bourgès, A., Gandreau, D., Joffroy, T., 2013. PaTerre+: Interactions argiles/biopolymères , Patrimoine Architectural en terre et stabilisants naturels d'origine animale et végétale. CRAterre ENSAG.
Google Scholar
[3]
Bruno, A.W., Gallipoli, D., Perlot, C., Mendes, J., 2017. Mechanical behaviour of hypercompacted earth for building construction. Mater Struct 50, 160. https://doi.org/10.1617/s11527-017-1027-5.
DOI: 10.1617/s11527-017-1027-5
Google Scholar
[4]
Champiré, F., Fabbri, A., Morel, J.-C., Wong, H., McGregor, F., 2016. Impact of relative humidity on the mechanical behavior of compacted earth as a building material. Construction and Building Materials 110, 70–78. https://doi.org/10.1016/j.conbuildmat.2016.01.027.
DOI: 10.1016/j.conbuildmat.2016.01.027
Google Scholar
[5]
Chang, I., Im, J., Prasidhi, A.K., Cho, G.-C., 2015a. Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials 74, 65–72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
DOI: 10.1016/j.conbuildmat.2014.10.026
Google Scholar
[6]
Chang, I., Jeon, M., Cho, G.-C., 2015b. Application of Microbial Biopolymers as an Alternative Construction Binder for Earth Buildings in Underdeveloped Countries. International Journal of Polymer Science 2015, 1–9. https://doi.org/10.1155/2015/326745.
DOI: 10.1155/2015/326745
Google Scholar
[7]
Dove, C.A., Bradley, F.F., Patwardhan, S.V., 2016. Seaweed biopolymers as additives for unfired clay bricks. Mater Struct 49, 4463–4482. https://doi.org/10.1617/s11527-016-0801-0.
DOI: 10.1617/s11527-016-0801-0
Google Scholar
[8]
Dube, O.P., Allen, M.R., Solecki, W., Aragón-Durand, F., Cramer, W., Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez, R., Wairiu, M., Zickfeld, K., 2018. Framing and Context In: Global Warming of 1.5°C. An IPCC Special Report. IPCC (GIEC).
Google Scholar
[9]
Guihéneuf, S., Rangeard, D., Perrot, A., 2020a. Processing methods for optimising the mechanical strength of raw earth-based materials. Proceedings of the Institution of Civil Engineers - Construction Materials. https://doi.org/10.1680/jcoma.19.00115.
DOI: 10.1680/jcoma.19.00115
Google Scholar
[10]
Guihéneuf, S., Rangeard, D., Perrot, A., 2019. Addition of bio based reinforcement to improve workability, mechanical properties and water resistance of earth-based materials, in: Academic Journal of Civil Engineering - Vol 37 No 2 (2019): Special Issue - ICBBM 2019. Presented at the ICBBM2019 International Conference on Bio-Based Building Materials, Belfast, p.184–192. https://doi.org/10.26168/icbbm2019.26.
DOI: 10.4028/www.scientific.net/cta.1.234
Google Scholar
[11]
Guihéneuf, S., Rangeard, D., Perrot, A., Cusin, T., Collet, F., Prétot, S., 2020b. Effect of bio-stabilizers on capillary absorption and water vapour transfer into raw earth. Mater Struct 53, 138. https://doi.org/10.1617/s11527-020-01571-z.
DOI: 10.1617/s11527-020-01571-z
Google Scholar
[12]
Ioannidou, D., Meylan, G., Sonnemann, G., Habert, G., 2017. Is gravel becoming scarce? Evaluating the local criticality of construction aggregates. Resources, Conservation and Recycling 126, 25–33. https://doi.org/10.1016/j.resconrec.2017.07.016.
DOI: 10.1016/j.resconrec.2017.07.016
Google Scholar
[13]
Landrou, G., 2018. Developement of Self-Compacting Clay Concrete. ETH Zurich, Zurich.
Google Scholar
[14]
McGregor, F., Heath, A., Maskell, D., Fabbri, A., Morel, J.-C., 2016. A review on the buffering capacity of earth building materials. Proceedings of the Institution of Civil Engineers - Construction Materials 169, 241–251. https://doi.org/10.1680/jcoma.15.00035.
DOI: 10.1680/jcoma.15.00035
Google Scholar
[15]
Minke, G., 2006. Building with Earth: Design and Technology of a Sustainable Architecture, Birkhäuser-Publishers for Architecture. ed. Basel · Berlin · Boston.
Google Scholar
[16]
Morel, J.C., Mesbah, A., Oggero, M., Walker, P., 2001. Building houses with local materials: means to drastically reduce the environmental impact of construction. Building and Environment 36, 1119–1126. https://doi.org/10.1016/S0360-1323(00)00054-8.
DOI: 10.1016/s0360-1323(00)00054-8
Google Scholar
[17]
Peduzzi, P., 2014. Sand, rarer than one thinks. Environmental Development 11, 208–218. https://doi.org/10.1016/j.envdev.2014.04.001.
DOI: 10.1016/j.envdev.2014.04.001
Google Scholar
[18]
Perrot, A., Rangeard, D., Courteille, E., 2018a. 3D printing of earth-based materials: Processing aspects. Construction and Building Materials 172, 670–676. https://doi.org/10.1016/j.conbuildmat.2018.04.017.
DOI: 10.1016/j.conbuildmat.2018.04.017
Google Scholar
[19]
Perrot, A., Rangeard, D., Menasria, F., Guihéneuf, S., 2018b. Strategies for optimizing the mechanical strengths of raw earth-based mortars. Construction and Building Materials 167, 496–504. https://doi.org/10.1016/j.conbuildmat.2018.02.055.
DOI: 10.1016/j.conbuildmat.2018.02.055
Google Scholar
[20]
Schaich, K.M., 2020. Lipid Oxidation: New Perspectives on an Old Reaction, in: Bailey's Industrial Oil and Fat Products. American Cancer Society, p.1–72. https://doi.org/10.1002/047167849X.bio067.pub2.
DOI: 10.1002/047167849x.bio067.pub2
Google Scholar
[21]
Scrivener, K.L., John, V.M., Gartner, E.M., 2018. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research 114, 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.
DOI: 10.1016/j.cemconres.2018.03.015
Google Scholar
[22]
Vinceslas, T., 2019. Caractérisation d'éco-matériaux Terre-Chanvre en prenant en compte la variabilité des ressources disponibles localement. Université Bretagne Sud Lorient, Lorient.
Google Scholar