[1]
Achenza, M., Fenu, L., 2007. On Earth Stabilization with Natural Polymers for Earth Masonry Construction. Mater Struct 39, 21–27. https://doi.org/10.1617/s11527-005-9000-0.
DOI: 10.1617/s11527-005-9000-0
Google Scholar
[2]
Anger, R., Fontaine, L., Vissac, A., Couvreur, L., Moevus, M., Bourgès, A., Gandreau, D., Joffroy, T., 2013. PaTerre+: Interactions argiles/biopolymères , Patrimoine Architectural en terre et stabilisants naturels d'origine animale et végétale. CRAterre ENSAG.
Google Scholar
[3]
Bruno, A.W., Gallipoli, D., Perlot, C., Mendes, J., 2017. Mechanical behaviour of hypercompacted earth for building construction. Mater Struct 50, 160. https://doi.org/10.1617/s11527-017-1027-5.
DOI: 10.1617/s11527-017-1027-5
Google Scholar
[4]
Bui, Q.-B., Morel, J.-C., Hans, S., Walker, P., 2014. Effect of moisture content on the mechanical characteristics of rammed earth. Construction and Building Materials 54, 163–169. https://doi.org/10.1016/j.conbuildmat.2013.12.067.
DOI: 10.1016/j.conbuildmat.2013.12.067
Google Scholar
[5]
Champiré, F., Fabbri, A., Morel, J.-C., Wong, H., McGregor, F., 2016. Impact of relative humidity on the mechanical behavior of compacted earth as a building material. Construction and Building Materials 110, 70–78. https://doi.org/10.1016/j.conbuildmat.2016.01.027.
DOI: 10.1016/j.conbuildmat.2016.01.027
Google Scholar
[6]
Chang, I., Jeon, M., Cho, G.-C., 2015. Application of Microbial Biopolymers as an Alternative Construction Binder for Earth Buildings in Underdeveloped Countries. International Journal of Polymer Science 2015, 1–9. https://doi.org/10.1155/2015/326745.
DOI: 10.1155/2015/326745
Google Scholar
[7]
Dove, C.A., Bradley, F.F., Patwardhan, S.V., 2016. Seaweed biopolymers as additives for unfired clay bricks. Mater Struct 49, 4463–4482. https://doi.org/10.1617/s11527-016-0801-0.
DOI: 10.1617/s11527-016-0801-0
Google Scholar
[8]
Guihéneuf, S., Rangeard, D., Perrot, A., 2020a. Processing methods for optimising the mechanical strength of raw earth-based materials. Proceedings of the Institution of Civil Engineers - Construction Materials. https://doi.org/10.1680/jcoma.19.00115.
DOI: 10.1680/jcoma.19.00115
Google Scholar
[9]
Guihéneuf, S., Rangeard, D., Perrot, A., 2019. Addition of bio based reinforcement to improve workability, mechanical properties and water resistance of earth-based materials, in: Academic Journal of Civil Engineering - Vol 37 No 2 (2019): Special Issue - ICBBM 2019. Presented at the ICBBM2019 International Conference on Bio-Based Building Materials, Belfast, p.184–192. https://doi.org/10.26168/icbbm2019.26.
DOI: 10.4028/www.scientific.net/cta.1.234
Google Scholar
[10]
Guihéneuf, S., Rangeard, D., Perrot, A., Cusin, T., Collet, F., Prétot, S., 2020b. Effect of bio-stabilizers on capillary absorption and water vapour transfer into raw earth. Mater Struct 53, 138. https://doi.org/10.1617/s11527-020-01571-z.
DOI: 10.1617/s11527-020-01571-z
Google Scholar
[11]
Ioannidou, D., Meylan, G., Sonnemann, G., Habert, G., 2017. Is gravel becoming scarce? Evaluating the local criticality of construction aggregates. Resources, Conservation and Recycling 126, 25–33. https://doi.org/10.1016/j.resconrec.2017.07.016.
DOI: 10.1016/j.resconrec.2017.07.016
Google Scholar
[12]
Khelifi, H., Lecompte, T., Perrot, A., Ausias, G., 2015. Mechanical enhancement of cement-stabilized soil by flax fibre reinforcement and extrusion processing. Mater Struct 49, 1143–1156. https://doi.org/10.1617/s11527-015-0564-z.
DOI: 10.1617/s11527-015-0564-z
Google Scholar
[13]
Krausmann, F., Gingrich, S., Eisenmenger, N., Erb, K.-H., Haberl, H., Fischer-Kowalski, M., 2009. Growth in global materials use, GDP and population during the 20th century. Ecological Economics 68, 2696–2705. https://doi.org/10.1016/j.ecolecon.2009.05.007.
DOI: 10.1016/j.ecolecon.2009.05.007
Google Scholar
[14]
Landrou, G., 2018. Developement of Self-Compacting Clay Concrete. ETH Zurich, Zurich.
Google Scholar
[15]
Landrou, G., Brumaud, C., Plötze, M.L., Winnefeld, F., Habert, G., 2018. A fresh look at dense clay paste: Deflocculation and thixotropy mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects 539, 252–260. https://doi.org/10.1016/j.colsurfa.2017.12.029.
DOI: 10.1016/j.colsurfa.2017.12.029
Google Scholar
[16]
Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T., 2018. GIEC, 2018 : Résumé à l'intention des décideurs, Réchauffement planétaire de 1,5 °C. Organisation météorologique mondiale, Genève, Suisse.
Google Scholar
[17]
Moevus, M., Jorand, Y., Olagnon, C., Maximilien, S., Anger, R., Fontaine, L., Arnaud, L., 2016. Earthen construction: an increase of the mechanical strength by optimizing the dispersion of the binder phase. Mater Struct 49, 1555–1568. https://doi.org/10.1617/s11527-015-0595-5.
DOI: 10.1617/s11527-015-0595-5
Google Scholar
[18]
Morel, J.C., Mesbah, A., Oggero, M., Walker, P., 2001. Building houses with local materials: means to drastically reduce the environmental impact of construction. Building and Environment 36, 1119–1126. https://doi.org/10.1016/S0360-1323(00)00054-8.
DOI: 10.1016/s0360-1323(00)00054-8
Google Scholar
[19]
Muguda, S., Lucas, G., Hughes, P.N., Augarde, C.E., Perlot, C., Bruno, A.W., Gallipoli, D., 2020. Durability and hygroscopic behaviour of biopolymer stabilised earthen construction materials. Construction and Building Materials 259, 119725. https://doi.org/10.1016/j.conbuildmat.2020.119725.
DOI: 10.1016/j.conbuildmat.2020.119725
Google Scholar
[20]
Ouedraogo, K.A.J., 2019. Stabilisation de matériaux de construction durables et écologiques à base de terre crue par des liants organiques et/ou minéraux à faibles impacts environnementaux. Université Toulouse 3 - Paul Sabatier, Toulouse.
DOI: 10.35562/balisages.979
Google Scholar
[21]
Ouedraogo, K.A.J., Aubert, J.-E., Tribout, C., Escadeillas, G., 2020. Is stabilization of earth bricks using low cement or lime contents relevant? Construction and Building Materials 236, 117578. https://doi.org/10.1016/j.conbuildmat.2019.117578.
DOI: 10.1016/j.conbuildmat.2019.117578
Google Scholar
[22]
Perrot, A., Rangeard, D., Courteille, E., 2018a. 3D printing of earth-based materials: Processing aspects. Construction and Building Materials 172, 670–676. https://doi.org/10.1016/j.conbuildmat.2018.04.017.
DOI: 10.1016/j.conbuildmat.2018.04.017
Google Scholar
[23]
Perrot, A., Rangeard, D., Levigneur, A., 2016. Linking rheological and geotechnical properties of kaolinite materials for earthen construction. Mater Struct 49, 4647–4655. https://doi.org/10.1617/s11527-016-0813-9.
DOI: 10.1617/s11527-016-0813-9
Google Scholar
[24]
Perrot, A., Rangeard, D., Menasria, F., Guihéneuf, S., 2018b. Strategies for optimizing the mechanical strengths of raw earth-based mortars. Construction and Building Materials 167, 496–504. https://doi.org/10.1016/j.conbuildmat.2018.02.055.
DOI: 10.1016/j.conbuildmat.2018.02.055
Google Scholar
[25]
Schaich, K.M., 2020. Lipid Oxidation: New Perspectives on an Old Reaction, in: Bailey's Industrial Oil and Fat Products. American Cancer Society, p.1–72. https://doi.org/10.1002/047167849X.bio067.pub2.
DOI: 10.1002/047167849x.bio067.pub2
Google Scholar
[26]
Scrivener, K.L., John, V.M., Gartner, E.M., 2018. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research 114, 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.
DOI: 10.1016/j.cemconres.2018.03.015
Google Scholar
[27]
Van Damme, H., Houben, H., 2018. Earth concrete. Stabilization revisited. Cement and Concrete Research 114, 90–102. https://doi.org/10.1016/j.cemconres.2017.02.035.
DOI: 10.1016/j.cemconres.2017.02.035
Google Scholar
[28]
Venkatarama Reddy, B.V., Prasanna Kumar, P., 2011a. Cement stabilised rammed earth. Part A: compaction characteristics and physical properties of compacted cement stabilised soils. Mater Struct 44, 681–693. https://doi.org/10.1617/s11527-010-9658-9.
DOI: 10.1617/s11527-010-9658-9
Google Scholar
[29]
Venkatarama Reddy, B.V., Prasanna Kumar, P., 2011b. Cement stabilised rammed earth. Part B: compressive strength and stress–strain characteristics. Mater Struct 44, 695–707. https://doi.org/10.1617/s11527-010-9659-8.
DOI: 10.1617/s11527-010-9659-8
Google Scholar
[30]
Vinceslas, T., 2019. Caractérisation d'éco-matériaux Terre-Chanvre en prenant en compte la variabilité des ressources disponibles localement. Université Bretagne Sud Lorient, Lorient.
Google Scholar
[31]
Yi, S.-T., Yang, E.-I., Choi, J.-C., 2006. Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete. Nuclear Engineering and Design 236, 115–127. https://doi.org/10.1016/j.nucengdes.2005.08.004.
DOI: 10.1016/j.nucengdes.2005.08.004
Google Scholar