Linseed Oil and Xanthan Gum: Promising Stabilisers for Earthen Building Materials

Article Preview

Abstract:

In the current context, the development of new bio-based and local building materials is becoming mandatory. Among them, earthen materials have a strong potential to be used as sustainable structural materials but their variability and their water sensitivity impact their mechanical properties that are difficult to guaranty. Recent developments have emphasised the ability of some bio-based additions to help to ensure these properties: linseed oil and xanthan gum are part of them. In this paper three different Breton earths, representative of a certain local variability, are studied. The impact of the selected bio-based additions on earths’ rheological behaviour is followed in order to adapt it to different forming processes. Then, the mechanical properties of different earth-addition combinations at the dry state, exposed to hygric variations and immersion are investigated for different forming processes. The findings highlight the fact that xanthan gum and linseed oil have a relevant ability to stabilise earthen blocks, that can be processed using different promising forming methods.

You might also be interested in these eBooks

Info:

Pages:

245-254

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Achenza, M., Fenu, L., 2007. On Earth Stabilization with Natural Polymers for Earth Masonry Construction. Mater Struct 39, 21–27. https://doi.org/10.1617/s11527-005-9000-0.

DOI: 10.1617/s11527-005-9000-0

Google Scholar

[2] Anger, R., Fontaine, L., Vissac, A., Couvreur, L., Moevus, M., Bourgès, A., Gandreau, D., Joffroy, T., 2013. PaTerre+: Interactions argiles/biopolymères , Patrimoine Architectural en terre et stabilisants naturels d'origine animale et végétale. CRAterre ENSAG.

Google Scholar

[3] Bruno, A.W., Gallipoli, D., Perlot, C., Mendes, J., 2017. Mechanical behaviour of hypercompacted earth for building construction. Mater Struct 50, 160. https://doi.org/10.1617/s11527-017-1027-5.

DOI: 10.1617/s11527-017-1027-5

Google Scholar

[4] Bui, Q.-B., Morel, J.-C., Hans, S., Walker, P., 2014. Effect of moisture content on the mechanical characteristics of rammed earth. Construction and Building Materials 54, 163–169. https://doi.org/10.1016/j.conbuildmat.2013.12.067.

DOI: 10.1016/j.conbuildmat.2013.12.067

Google Scholar

[5] Champiré, F., Fabbri, A., Morel, J.-C., Wong, H., McGregor, F., 2016. Impact of relative humidity on the mechanical behavior of compacted earth as a building material. Construction and Building Materials 110, 70–78. https://doi.org/10.1016/j.conbuildmat.2016.01.027.

DOI: 10.1016/j.conbuildmat.2016.01.027

Google Scholar

[6] Chang, I., Jeon, M., Cho, G.-C., 2015. Application of Microbial Biopolymers as an Alternative Construction Binder for Earth Buildings in Underdeveloped Countries. International Journal of Polymer Science 2015, 1–9. https://doi.org/10.1155/2015/326745.

DOI: 10.1155/2015/326745

Google Scholar

[7] Dove, C.A., Bradley, F.F., Patwardhan, S.V., 2016. Seaweed biopolymers as additives for unfired clay bricks. Mater Struct 49, 4463–4482. https://doi.org/10.1617/s11527-016-0801-0.

DOI: 10.1617/s11527-016-0801-0

Google Scholar

[8] Guihéneuf, S., Rangeard, D., Perrot, A., 2020a. Processing methods for optimising the mechanical strength of raw earth-based materials. Proceedings of the Institution of Civil Engineers - Construction Materials. https://doi.org/10.1680/jcoma.19.00115.

DOI: 10.1680/jcoma.19.00115

Google Scholar

[9] Guihéneuf, S., Rangeard, D., Perrot, A., 2019. Addition of bio based reinforcement to improve workability, mechanical properties and water resistance of earth-based materials, in: Academic Journal of Civil Engineering - Vol 37 No 2 (2019): Special Issue - ICBBM 2019. Presented at the ICBBM2019 International Conference on Bio-Based Building Materials, Belfast, p.184–192. https://doi.org/10.26168/icbbm2019.26.

DOI: 10.4028/www.scientific.net/cta.1.234

Google Scholar

[10] Guihéneuf, S., Rangeard, D., Perrot, A., Cusin, T., Collet, F., Prétot, S., 2020b. Effect of bio-stabilizers on capillary absorption and water vapour transfer into raw earth. Mater Struct 53, 138. https://doi.org/10.1617/s11527-020-01571-z.

DOI: 10.1617/s11527-020-01571-z

Google Scholar

[11] Ioannidou, D., Meylan, G., Sonnemann, G., Habert, G., 2017. Is gravel becoming scarce? Evaluating the local criticality of construction aggregates. Resources, Conservation and Recycling 126, 25–33. https://doi.org/10.1016/j.resconrec.2017.07.016.

DOI: 10.1016/j.resconrec.2017.07.016

Google Scholar

[12] Khelifi, H., Lecompte, T., Perrot, A., Ausias, G., 2015. Mechanical enhancement of cement-stabilized soil by flax fibre reinforcement and extrusion processing. Mater Struct 49, 1143–1156. https://doi.org/10.1617/s11527-015-0564-z.

DOI: 10.1617/s11527-015-0564-z

Google Scholar

[13] Krausmann, F., Gingrich, S., Eisenmenger, N., Erb, K.-H., Haberl, H., Fischer-Kowalski, M., 2009. Growth in global materials use, GDP and population during the 20th century. Ecological Economics 68, 2696–2705. https://doi.org/10.1016/j.ecolecon.2009.05.007.

DOI: 10.1016/j.ecolecon.2009.05.007

Google Scholar

[14] Landrou, G., 2018. Developement of Self-Compacting Clay Concrete. ETH Zurich, Zurich.

Google Scholar

[15] Landrou, G., Brumaud, C., Plötze, M.L., Winnefeld, F., Habert, G., 2018. A fresh look at dense clay paste: Deflocculation and thixotropy mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects 539, 252–260. https://doi.org/10.1016/j.colsurfa.2017.12.029.

DOI: 10.1016/j.colsurfa.2017.12.029

Google Scholar

[16] Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T., 2018. GIEC, 2018 : Résumé à l'intention des décideurs, Réchauffement planétaire de 1,5 °C. Organisation météorologique mondiale, Genève, Suisse.

Google Scholar

[17] Moevus, M., Jorand, Y., Olagnon, C., Maximilien, S., Anger, R., Fontaine, L., Arnaud, L., 2016. Earthen construction: an increase of the mechanical strength by optimizing the dispersion of the binder phase. Mater Struct 49, 1555–1568. https://doi.org/10.1617/s11527-015-0595-5.

DOI: 10.1617/s11527-015-0595-5

Google Scholar

[18] Morel, J.C., Mesbah, A., Oggero, M., Walker, P., 2001. Building houses with local materials: means to drastically reduce the environmental impact of construction. Building and Environment 36, 1119–1126. https://doi.org/10.1016/S0360-1323(00)00054-8.

DOI: 10.1016/s0360-1323(00)00054-8

Google Scholar

[19] Muguda, S., Lucas, G., Hughes, P.N., Augarde, C.E., Perlot, C., Bruno, A.W., Gallipoli, D., 2020. Durability and hygroscopic behaviour of biopolymer stabilised earthen construction materials. Construction and Building Materials 259, 119725. https://doi.org/10.1016/j.conbuildmat.2020.119725.

DOI: 10.1016/j.conbuildmat.2020.119725

Google Scholar

[20] Ouedraogo, K.A.J., 2019. Stabilisation de matériaux de construction durables et écologiques à base de terre crue par des liants organiques et/ou minéraux à faibles impacts environnementaux. Université Toulouse 3 - Paul Sabatier, Toulouse.

DOI: 10.35562/balisages.979

Google Scholar

[21] Ouedraogo, K.A.J., Aubert, J.-E., Tribout, C., Escadeillas, G., 2020. Is stabilization of earth bricks using low cement or lime contents relevant? Construction and Building Materials 236, 117578. https://doi.org/10.1016/j.conbuildmat.2019.117578.

DOI: 10.1016/j.conbuildmat.2019.117578

Google Scholar

[22] Perrot, A., Rangeard, D., Courteille, E., 2018a. 3D printing of earth-based materials: Processing aspects. Construction and Building Materials 172, 670–676. https://doi.org/10.1016/j.conbuildmat.2018.04.017.

DOI: 10.1016/j.conbuildmat.2018.04.017

Google Scholar

[23] Perrot, A., Rangeard, D., Levigneur, A., 2016. Linking rheological and geotechnical properties of kaolinite materials for earthen construction. Mater Struct 49, 4647–4655. https://doi.org/10.1617/s11527-016-0813-9.

DOI: 10.1617/s11527-016-0813-9

Google Scholar

[24] Perrot, A., Rangeard, D., Menasria, F., Guihéneuf, S., 2018b. Strategies for optimizing the mechanical strengths of raw earth-based mortars. Construction and Building Materials 167, 496–504. https://doi.org/10.1016/j.conbuildmat.2018.02.055.

DOI: 10.1016/j.conbuildmat.2018.02.055

Google Scholar

[25] Schaich, K.M., 2020. Lipid Oxidation: New Perspectives on an Old Reaction, in: Bailey's Industrial Oil and Fat Products. American Cancer Society, p.1–72. https://doi.org/10.1002/047167849X.bio067.pub2.

DOI: 10.1002/047167849x.bio067.pub2

Google Scholar

[26] Scrivener, K.L., John, V.M., Gartner, E.M., 2018. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research 114, 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.

DOI: 10.1016/j.cemconres.2018.03.015

Google Scholar

[27] Van Damme, H., Houben, H., 2018. Earth concrete. Stabilization revisited. Cement and Concrete Research 114, 90–102. https://doi.org/10.1016/j.cemconres.2017.02.035.

DOI: 10.1016/j.cemconres.2017.02.035

Google Scholar

[28] Venkatarama Reddy, B.V., Prasanna Kumar, P., 2011a. Cement stabilised rammed earth. Part A: compaction characteristics and physical properties of compacted cement stabilised soils. Mater Struct 44, 681–693. https://doi.org/10.1617/s11527-010-9658-9.

DOI: 10.1617/s11527-010-9658-9

Google Scholar

[29] Venkatarama Reddy, B.V., Prasanna Kumar, P., 2011b. Cement stabilised rammed earth. Part B: compressive strength and stress–strain characteristics. Mater Struct 44, 695–707. https://doi.org/10.1617/s11527-010-9659-8.

DOI: 10.1617/s11527-010-9659-8

Google Scholar

[30] Vinceslas, T., 2019. Caractérisation d'éco-matériaux Terre-Chanvre en prenant en compte la variabilité des ressources disponibles localement. Université Bretagne Sud Lorient, Lorient.

Google Scholar

[31] Yi, S.-T., Yang, E.-I., Choi, J.-C., 2006. Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete. Nuclear Engineering and Design 236, 115–127. https://doi.org/10.1016/j.nucengdes.2005.08.004.

DOI: 10.1016/j.nucengdes.2005.08.004

Google Scholar