How can a Climate-Neutral Building Look Like?

Article Preview

Abstract:

The climate crisis is urging us to act fast. Buildings are a key leverage point to reduce greenhouse gas (GHG) emissions, but the embodied emissions related with their construction remain often the hidden challenge of any ambitious policy. Considering that a complete material substitution is not possible, we explore in this paper a material GHG compensation where fast-growing bio-based insulation materials are used to compensate building elements that necessarily release GHG. Looking for analogies with other human activities, different material diets as well as different building typologies are modelled to assess the consequences in term of bio-based insulation requirement to reach climate-neutrality. The material diets are defined according to the gradual use of herbaceous materials, from the insulation up to the structural level: omnivorous, vegetarian and vegan. Our results show the relationship in terms of volume between the climate intensive materials and the climate-negative ones needed to neutralize the overall building GHG emissions. Moreover, they suggest how climate-neutral building can look like and that it is possible to have climate-neutral buildings with wall thickness within the range of current construction practices.

You might also be interested in these eBooks

Info:

Pages:

279-286

Citation:

Online since:

January 2022

Funder:

The publication of this article was funded by the ETH Zurich 10.13039/501100003006

Export:

Share:

Citation:

* - Corresponding Author

[1] Cavac Biomatériaux, 2018. Fiche De Declaration Environnementale Et Sanitaire Du Produit: Isolant Biofib Trio.

Google Scholar

[2] Churkina, G., Organschi, A., Reyer, C.P.O., Ruff, A., Vinke, K., Liu, Z., Reck, B.K., Graedel, T.E., Schellnhuber, H.J., 2020. Buildings as a global carbon sink. Nat. Sustain. https://doi.org/10.1038/s41893-019-0462-4.

DOI: 10.1038/s41893-019-0462-4

Google Scholar

[3] Davis, S.J., Lewis, N.S., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I.L., Benson, S.M., Bradley, T., Brouwer, J., Chiang, Y.M., Clack, C.T.M., Cohen, A., Doig, S., Edmonds, J., Fennell, P., Field, C.B., Hannegan, B., Hodge, B.M., Hoffert, M.I., Ingersoll, E., Jaramillo, P., Lackner, K.S., Mach, K.J., Mastrandrea, M., Ogden, J., Peterson, P.F., Sanchez, D.L., Sperling, D., Stagner, J., Trancik, J.E., Yang, C.J., Caldeira, K., 2018. Net-zero emissions energy systems. Science (80-. ). 360. https://doi.org/10.1126/science.aas9793.

DOI: 10.1126/science.aas9793

Google Scholar

[4] De Wolf, C., Hoxha, E., Hollberg, A., Fivet, C., Ochsendorf, J., 2020. Database of Embodied Quantity Outputs : Lowering Material Impacts Through Engineering 26, 1–12. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000408.

DOI: 10.1061/(asce)ae.1943-5568.0000408

Google Scholar

[5] Eidgenossenschaft, S., 2016. KBOB - Koordinationskonferenz der Bau- und Liegenschaftsorgane der öffentlichen Bauherren [WWW Document]. URL https://www.kbob.admin.ch/kbob/de/home.html (accessed 3.20.20).

Google Scholar

[6] Guest, G., Cherubini, F., Strømman, A.H., 2013. Global Warming Potential of Carbon Dioxide Emissions from Biomass Stored in the Anthroposphere and Used for Bioenergy at End of Life. J. Ind. Ecol. 17, 20–30. https://doi.org/10.1111/j.1530-9290.2012.00507.x.

DOI: 10.1111/j.1530-9290.2012.00507.x

Google Scholar

[7] Habert, G., Röck, M., Steininger, K., Lupísek, A., Birgisdottir, H., Desing, H., Chandrakumar, C., Pittau, F., Passer, A., Rovers, R., Slavkovic, K., Hollberg, A., Hoxha, E., Jusselme, T., Nault, E., Allacker, K., Lützkendorf, T., 2020. Carbon budgets for buildings: harmonising temporal, spatial and sectoral dimensions. Build. Cities 1, 429–452. https://doi.org/10.5334/bc.47.

DOI: 10.5334/bc.47

Google Scholar

[8] Hoxha, E., Passer, A., Saade, M.R.M., Trigaux, D., Shuttleworth, A., Pittau, F., Allacker, K., Habert, G., 2020. Biogenic carbon in buildings: a critical overview of LCA methods. Build. Cities 1, 504–524. https://doi.org/10.5334/bc.46.

DOI: 10.5334/bc.46

Google Scholar

[9] Intelligent Energy Europe, 2016. European Projects TABULA & EPISCOPE [WWW Document].

Google Scholar

[10] Joos, F., Roth, R., Fuglestvedt, J.S., Peters, G.P., Enting, I.G., Von Bloh, W., Brovkin, V., Burke, E.J., Eby, M., Edwards, N.R., Friedrich, T., Frölicher, T.L., Halloran, P.R., Holden, P.B., Jones, C., Kleinen, T., Mackenzie, F.T., Matsumoto, K., Meinshausen, M., Plattner, G.K., Reisinger, A., Segschneider, J., Shaffer, G., Steinacher, M., Strassmann, K., Tanaka, K., Timmermann, A., Weaver, A.J., 2013. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825. https://doi.org/10.5194/acp-13-2793-2013.

DOI: 10.5194/acp-13-2793-2013

Google Scholar

[11] Levasseur, A., Lesange, P., Margini, M., Deschenes, L., Samson, R., 2010. Considering Time in LCA: Dynamic LCA and Its Application to Global Warming Impact Assessments. Environmetal, Sci. Technol. 44. https://doi.org/10.1021/es9030003.

DOI: 10.1021/es9030003

Google Scholar

[12] Pittau, F., Krause, F., Lumia, G., Habert, G., 2018. Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Build. Environ. 129, 117–129. https://doi.org/10.1016/j.buildenv.2017.12.006.

DOI: 10.1016/j.buildenv.2017.12.006

Google Scholar

[13] Pomponi, F., Hart, J., Arehart, J.H., Amico, B.D., 2020. Buildings as a Global Carbon Sink ? A Reality Check on Feasibility Limits. One Earth 3, 157–161. https://doi.org/10.1016/j.oneear.2020.07.018.

DOI: 10.1016/j.oneear.2020.07.018

Google Scholar

[14] Schiavoni, S., D'Alessandro, F., Bianchi, F., Asdrubali, F., 2016. Insulation materials for the building sector: A review and comparative analysis. Renew. Sustain. Energy Rev. 62, 988–1011. https://doi.org/10.1016/j.rser.2016.05.045.

DOI: 10.1016/j.rser.2016.05.045

Google Scholar

[15] Vogtländer, J.G., van der Lugt, P., 2015. The Environmental Impact of Industrial Bamboo Products: Life cycle assessment and carbon sequestration. Technical report No.35. https://doi.org/10.13140/RG.2.2.20797.46560.

Google Scholar