[1]
Brazilian Association of Technical Standards, 2002. Concrete - Determination of air content of freshly mixed concrete - Pressure method: NBR NM 47. Rio de Janeiro.
Google Scholar
[2]
Brazilian Association of Technical Standards, 2005. Mortars applied on walls and ceilings - Determination of the specific gravity and the air entrained content in the fresh stage: NBR 13278. Rio de Janeiro.
Google Scholar
[3]
Brazilian Association of Technical Standards, 2005. Mortars applied on walls and ceilings - Determination of the flexural and the compressive strength in the hardened stage: NBR 13279. Rio de Janeiro.
Google Scholar
[4]
Brazilian Association of Technical Standards, 2016. Mortars applied on walls and ceilings - Determination of the consistence index: NBR 13276. Rio de Janeiro.
Google Scholar
[5]
Brazilian Association of Technical Standards, 2017. Concrete - Determination of static modulus of elasticity and deformation by compression: NBR 8522. Rio de Janeiro.
Google Scholar
[6]
Brazilian Association of Technical Standards, 2018. Concrete - Compression test of cylindrical specimens: NBR 5739. Rio de Janeiro.
Google Scholar
[7]
Caldas, L.R., Da Gloria, M.Y.R., Pittau, F., Andreola, V.M., Habert, G., Toledo Filho, R.D., 2020b. Environmental impact assessment of wood bio-concretes: Evaluation of the influence of different supplementary cementitious materials. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2020.121146.
DOI: 10.1016/j.conbuildmat.2020.121146
Google Scholar
[8]
Caldas, L.R., Paiva, R.L.M., Martins, A. P. S., Toledo Filho, R.D., 2020. Argamassas de terra versus convencionais: avaliação do desempenho ambiental considerando o ciclo de vida, Mix Sustentável. 6, 115–128.
DOI: 10.29183/2447-3073.mix2020.v6.n4.115-128
Google Scholar
[9]
Celik, K., Meral, C., Gursel, A.P., Mehta, P.K., Horvath, A., Monteiro, P.J.M., 2015. Mechanical properties , durability , and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder, Cement & Concrete Composites, 56, 59–72. https://doi.org/10.1016/j.cemconcomp.2014.11.003.
DOI: 10.1016/j.cemconcomp.2014.11.003
Google Scholar
[10]
Delinière, R., Aubert, JE, Rojat, F., Gasc-Barbier, M., 2014. Physical, mineralogical and mechanical characterization of ready-mixed clay plaster, Building and Environment, 80, 11-17. https://doi.org/10.1016/j.buildenv.2014.05.012.
DOI: 10.1016/j.buildenv.2014.05.012
Google Scholar
[11]
Emiroglu, M., Yalama, A., Erdogdu, Y., 2015. Performance of ready-mixed clay plasters produced with different clay/sand ratios, Applied Clay Science 115, 221-229. https://doi.org/10.1016/j.clay.2015.08.005.
DOI: 10.1016/j.clay.2015.08.005
Google Scholar
[12]
European Committe for Standardization, 2011. Sustainability of construction works — Assessment of environmental performance of buildings — Calculation method: CEN EN 15978.
Google Scholar
[13]
European Committe for Standardization, 2012. Sustainability of construction works. Environmental product declarations : Core rules for the product category of construction products: CEN EN 15804.
DOI: 10.3403/30259256
Google Scholar
[14]
Galán-Marín, C., Rivera-Gómez, C., García-Martínez, A., 2015. Embodied energy of conventional load-bearing walls versus natural stabilized earth blocks, Energy and Buildings Energy Build. 97, 146–154. https://doi.org/10.1016/j.enbuild.2015.03.054.
DOI: 10.1016/j.enbuild.2015.03.054
Google Scholar
[15]
International Energy Agency – IEA, 2019, Perspectives for the Clean Energy Transition. The Critical Role of Buildings. Available in https://webstore.iea.org/download/direct/2496, acessed in january of (2021).
Google Scholar
[16]
Melià, P., Ruggieri, G., Sabbadini, S., Dotelli, G., 2014, Environmental impacts of natural and conventional building materials: a case study on earth plasters, Journal of Cleaner Production, 80, 179-186.https://doi.org/10.1016/j.jclepro.2014.05.073.
DOI: 10.1016/j.jclepro.2014.05.073
Google Scholar
[17]
Moevus, M., Jorand, Y., Olagnon, C., Maximilien, S., Anger, R., Fontaine, L., Arnaud, L., 2015. Earthen construction: an increase of the mechanical strength by optimizing the dispersion of the binder phase, Materials and Structures,.
DOI: 10.1617/s11527-015-0595-5
Google Scholar
[18]
Perrot, A., Rangeard, D., Menasria, F., Guihéneuf, S., Strategies for optimizing the mechanical strengths of raw earth-based mortars, Construction and Building Materials, 167, 496-504. https://doi.org/10.1016/j.conbuildmat.2018.02.055.
DOI: 10.1016/j.conbuildmat.2018.02.055
Google Scholar
[19]
Santos, T., Nunes, L., Faria, P., 2017, Production of eco-efficient earth-based plasters: Influence of composition on physical performance and bio-susceptibility, Journal of Cleaner Production, 167, 55–67. https://doi.org/10.1016/j.jclepro.2017.08.131.
DOI: 10.1016/j.jclepro.2017.08.131
Google Scholar
[20]
Santos, T., Faria, P., Silva, A.S., 2021, Eco-efficient earth plasters: The effect of sand grading and additions on fresh and mechanical properties, Journal of Building Engineering, 33, https://doi.org/10.1016/j.jobe.2020.101591.
DOI: 10.1016/j.jobe.2020.101591
Google Scholar
[21]
Santos, T., Almeida, J., silvestre, J.D., Faria, P., 2021. Life cycle assessment of mortars: A review on technical potential and drawbacks, Construction and Building Materials, 288, https://doi.org/10.1016/j.conbuildmat.2021.123069.
DOI: 10.1016/j.conbuildmat.2021.123069
Google Scholar