How Reliable is the Thermal Conductivity of Biobased Building Insulating Materials Measured with Hot Disk Device?

Article Preview

Abstract:

Thermal conductivity is of high importance for insulating materials since it strongly influences the thermal performance of the building. Generally, it is recommended to measure this property with steady-state methods like guarded hot plate (GHP) or heat flow meter (HFM). These methods are reliable, but steady-state condition can take a long time to be reached. Therefore, transient methods were developed to speed-up the measurements. For instance, the hot disk transient plane source method is a widely used standard technique (ISO 22007-2) for measuring thermal conductivity of various materials. In the last 20 years, this technique has been applied also to bio-based insulating materials. However, overestimated thermal conductivity (compared to steady state method) are frequently measured. More generally, such differences are also observed for low thermal conductivity materials. The aim of this work is to evaluate the influence of numerous factors to explain the origin of these differences. The factors include the experimental setting parameters, the measurement analysis parameter or even the discrepancies between the theoretical model and the real experimental set-up. The analysis is performed for a light-earth biobased concrete made of raw earth and hemp shiv. Recommendations are proposed in conclusion.

You might also be interested in these eBooks

Info:

Pages:

287-292

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Al-Ajlan, S. A., 2006. Measurements of thermal properties of insulation materials by using transient plane source technique. Applied thermal engineering, 26(17-18), 2184-2191. https://doi.org/10.1016/j.applthermaleng.2006.04.006.

DOI: 10.1016/j.applthermaleng.2006.04.006

Google Scholar

[2] Bohac, V., Gustavsson, M. K., Kubicar, L., & Gustafsson, S. E., 2000. Parameter estimations for measurements of thermal transport properties with the hot disk thermal constants analyzer. Review of scientific instruments, 71(6), 2452-2455. https://doi.org/10.1063/1.1150635.

DOI: 10.1063/1.1150635

Google Scholar

[3] Chabannes, M., Nozahic, V., & Amziane, S., 2015. Design and multi-physical properties of a new insulating concrete using sunflower stem aggregates and eco-friendly binders. Materials and Structures, 48(6), 1815-1829. https://doi.org/10.1617/s11527-014-0276-9.

DOI: 10.1617/s11527-014-0276-9

Google Scholar

[4] Colinart, T., Vinceslas, T., Lenormand, H., De Menibus, A. H., Hamard, E., & Lecompte, T., 2020. Hygrothermal properties of light-earth building materials. Journal of Building Engineering, 29, 101134. https://doi.org/10.1016/j.jobe.2019.101134.

DOI: 10.1016/j.jobe.2019.101134

Google Scholar

[5] Delannoy, G., Marceau, S., Glé, P., Gourlay, E., Guéguen-Minerbe, M., Diafi, D., et al., 2019. Influence of binder on the multiscale properties of hemp concretes. European Journal of Environmental and Civil Engineering, 23(5), 609-625. https://doi.org/10.1080/19648189.2018.1457571.

DOI: 10.1080/19648189.2018.1457571

Google Scholar

[6] Gustafsson, S. E., 1991. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Review of scientific instruments, 62(3), 797-804. https://doi.org/10.1063/1.1142087.

DOI: 10.1063/1.1142087

Google Scholar

[7] Hamdaoui, O., Ibos, L., Mazioud, A., Safi, M., & Limam, O., 2018. Thermophysical characterization of Posidonia Oceanica marine fibers intended to be used as an insulation material in Mediterranean buildings. Construction and Building Materials, 180, 68-76. https://doi.org/10.1016/j.conbuildmat.2018.05.195.

DOI: 10.1016/j.conbuildmat.2018.05.195

Google Scholar

[8] ISO 22007-2., 2015. Plastics—Determination of Thermal Conductivity and Thermal Diffusivity—Part 2: Transient Plane Heat Source (Hot Disc) Method.

DOI: 10.3403/30427388

Google Scholar

[9] Jannot, Y., & Degiovanni, A., 2018. Thermal properties measurement of materials. Wiley-ISTE, London. ISBN 9781786302557.

DOI: 10.1002/9781119475057

Google Scholar

[10] Mazhoud, B., Collet, F., Pretot, S., & Chamoin, J., 2016. Hygric and thermal properties of hemp-lime plasters. Building and Environment, 96, 206-216. https://doi.org/10.1016/j.buildenv.2015.11.013.

DOI: 10.1016/j.buildenv.2015.11.013

Google Scholar

[11] Tran-Le, A. D., Nguyen, S. T., & Langlet, T., 2019. A novel anisotropic analytical model for effective thermal conductivity tensor of dry lime-hemp concrete with preferred spatial distributions. Energy and Buildings, 182, 75-87. https://doi.org/10.1016/j.enbuild.2018.09.043.

DOI: 10.1016/j.enbuild.2018.09.043

Google Scholar

[12] Trofimov, A. A., Atchley, J., Shrestha, S. S., Desjarlais, A. O., & Wang, H., 2020. Evaluation of measuring thermal conductivity of isotropic and anisotropic thermally insulating materials by transient plane source (Hot Disk) technique. Journal of Porous Materials, 27(6), 1791-1800. https://doi.org/10.1007/s10934-020-00956-3.

DOI: 10.1007/s10934-020-00956-3

Google Scholar

[13] Vinceslas T., Colinart T., Hamard E., de Ménibus A.H., Lecompte T., Lenormand H., 2019. Light Earth Performances For Thermal Insulation: Application To Earth–Hemp. In: Reddy B., Mani M., Walker P. (eds) Earthen Dwellings and Structures. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-5883-8_31.

DOI: 10.1007/978-981-13-5883-8_31

Google Scholar

[14] Williams, J., Lawrence, M., & Walker, P., 2017. The influence of the casting process on the internal structure and physical properties of hemp-lime. Materials and Structures, 50(2), 108. https://doi.org/10.1617/s11527-016-0976-4.

DOI: 10.1617/s11527-016-0976-4

Google Scholar

[15] Zhang, H., Jin, Y., Gu, W., Li, Z. Y., & Tao, W. Q., 2013. A numerical study on the influence of insulating layer of the hot disk sensor on the thermal conductivity measuring accuracy. Progress in Computational Fluid Dynamics, an International Journal, 13(3-4), 191-201. https://doi.org/10.1504/PCFD.2013.053660.

DOI: 10.1504/pcfd.2013.053660

Google Scholar

[16] Zheng, Q., Kaur, S., Dames, C., & Prasher, R. S., 2020. Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials. International Journal of Heat and Mass Transfer, 151, 119331. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119331.

DOI: 10.1016/j.ijheatmasstransfer.2020.119331

Google Scholar