Mechanical Compression and Crushing Properties of a Straw-Lime Material

Article Preview

Abstract:

The aim of this study was to determine the compressive mechanical properties and the energy absorption characteristics of a bio-composite material based on lime, wheat straw, and additives (protein and entraining agent). The selected samples with fiber to binder ratio of 30% were subjected to compression tests at different strain rates (1 mm/min, 10 mm/min, and 100 mm/min), in the perpendicular and parallel directions to fiber orientation. Image analysis supported with Digital Image Correlation (DIC) method is performed to follow longitudinal and lateral deformations, thus making it possible to evaluate elastic properties. The results show that the highest density and compressive strength in the parallel direction are ~349 kg/m3 and ~0.101 MPa, respectively. The perpendicular specimens at 100 mm/min of speed test showed the highest values of densification strain, stress plateau, energy efficiency, and absorbed-energy of 47.27%, 0.32 MPa, 16.98 %, and 13.84 kJ/m2, respectively. The values of Young’s modulus identified with DIC are significantly different from those determined by the slope of the linear part of the stress-strain curve. A slight influence of strain rate on mechanical properties is observed.

You might also be interested in these eBooks

Info:

Pages:

227-233

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Belayachi, N., Bouasker, M., Hoxha, D., Al-Mukhtar, M., 2013. Thermo-mechanical behaviour of an innovant straw lime composite for thermal insulation applications. Appl. Mech. Mater. 390, 542–546. https://doi.org/10.4028/www.scientific.net/AMM.390.542.

DOI: 10.4028/www.scientific.net/amm.390.542

Google Scholar

[2] Bertelsen, I.M.G., Kragh, C., Cardinaud, G., Ottosen, L.M., Fischer, G., 2019. Quantification of plastic shrinkage cracking in mortars using digital image correlation. Cem. Concr. Res. 123, 105761. https://doi.org/10.1016/j.cemconres.2019.05.006.

DOI: 10.1016/j.cemconres.2019.05.006

Google Scholar

[3] Bourdot, A., Moussa, T., Gacoin, A., Maalouf, C., Vazquez, P., Thomachot-Schneider, C., Bliard, C., Merabtine, A., Lachi, M., Douzane, O., Karaky, H., Polidori, G., 2017. Characterization of a hemp-based agro-material: Influence of starch ratio and hemp shive size on physical, mechanical, and hygrothermal properties. Energy Build. 153, 501–512. https://doi.org/10.1016/j.enbuild.2017.08.022.

DOI: 10.1016/j.enbuild.2017.08.022

Google Scholar

[4] Ismail, B., Belayachi, N., Hoxha, D., 2020. Optimizing performance of insulation materials based on wheat straw, lime and gypsum plaster composites using natural additives. Constr. Build. Mater. 254, 118959. https://doi.org/10.1016/j.conbuildmat.2020.118959.

DOI: 10.1016/j.conbuildmat.2020.118959

Google Scholar

[5] Le, A.T., Gacoin, A., Li, A., Mai, T.H., Rebay, M., Delmas, Y., 2014. Experimental investigation on the mechanical performance of starch-hemp composite materials. Constr. Build. Mater. 61, 106–113. https://doi.org/10.1016/j.conbuildmat.2014.01.084.

DOI: 10.1016/j.conbuildmat.2014.01.084

Google Scholar

[6] Li, Q.M., Magkiriadis, I., Harrigan, J.J., 2006. Compressive strain at the onset of densification of cellular solids. J. Cell. Plast. 42, 371–392. https://doi.org/10.1177/0021955X06063519.

DOI: 10.1177/0021955x06063519

Google Scholar

[7] Page, J., Sonebi, M., Amziane, S., 2017. Design and multi-physical properties of a new hybrid hemp-flax composite material. Constr. Build. Mater. 139, 502–512. https://doi.org/10.1016/j.conbuildmat.2016.12.037.

DOI: 10.1016/j.conbuildmat.2016.12.037

Google Scholar

[8] Tahenni, T., Bouziadi, F., Boulekbache, B., Amziane, S., 2021. Experimental and nonlinear finite element analysis of shear behaviour of reinforced concrete beams. Structures 29, 1582–1596. https://doi.org/10.1016/j.istruc.2020.12.043.

DOI: 10.1016/j.istruc.2020.12.043

Google Scholar

[9] Touchal, S., Morestin, F., Brunet, M., 1996. Mesure de champs de déplacements et de déformations par corrélation d'images numériques. Actes du Colloq. Natl. mécamat 96, 179–182.

Google Scholar

[10] Vatani Oskouei, A., Afzali, M., Madadipour, M., 2017. Experimental investigation on mud bricks reinforced with natural additives under compressive and tensile tests. Constr. Build. Mater. 142, 137–147. https://doi.org/10.1016/j.conbuildmat.2017.03.065.

DOI: 10.1016/j.conbuildmat.2017.03.065

Google Scholar

[11] Zemam, S.K., Resan, S.F., Abed, M.S., 2019. Structural Characteristics of Developed Sustainable Lime-Straw Composite. Civ. Eng. J. 5, 2587–2597. https://doi.org/10.28991/cej-2019-03091435.

DOI: 10.28991/cej-2019-03091435

Google Scholar