[1]
Badens, E., Veesler, S., Boistelle, R., 1999. Crystallization of gypsum from hemihydrate in presence of additives. J. Cryst. Growth 198–199, 704–709. https://doi.org/10.1016/S0022-0248(98)01206-8.
DOI: 10.1016/s0022-0248(98)01206-8
Google Scholar
[2]
Burris, L.E., Kurtis, K.E., 2018. Influence of set retarding admixtures on calcium sulfoaluminate cement hydration and property development. Cem. Concr. Res. 104, 105–113. https://doi.org/10.1016/j.cemconres.2017.11.005.
DOI: 10.1016/j.cemconres.2018.10.014
Google Scholar
[3]
Cicek, B., Martins, N.P., Brumaud, C., Habert, G., 2019. CSA as A Revisited Vernacular Technique for Earth Stabilization, in: 2nd International Conference of Sustainable Building Materials.
Google Scholar
[4]
Cicek, B., Martins, N.P., Brumaud, C., Habert, G., Plötze, M., 2020. A Revisited Vernacular Stabilization Technique for a Durable Earth-Mix, in: LEHM 2020 Proceedings. p.2425.
Google Scholar
[5]
Coumes, C.C.D., Farcy, O., Antonucci, P., Champenois, J.B., Lambertin, D., Mesbah, A., 2019. Design of self-desiccating binders using CSA cement: Influence of the cement composition and sulfate source. Adv. Cem. Res. 31, 178–194. https://doi.org/10.1680/jadcr.18.00100.
DOI: 10.1680/jadcr.18.00100
Google Scholar
[6]
Glasser, F.P., Zhang, L., 2001. High-performance cement matrices based on calcium sulfoaluminate-belite compositions. Cem. Concr. Res. 31, 1881–1886. https://doi.org/10.1016/S0008-8846(01)00649-4.
DOI: 10.1016/s0008-8846(01)00649-4
Google Scholar
[7]
Ideker, J.H., Scrivener, K.L., Fryda, H., Touzo, B., 2019. Calcium aluminate cements, Lea's Chemistry of Cement and Concrete. https://doi.org/10.1016/B978-0-08-100773-0.00012-5.
DOI: 10.1016/b978-0-08-100773-0.00012-5
Google Scholar
[8]
Lanzón, M., García-Ruiz, P.A., 2012. Effect of citric acid on setting inhibition and mechanical properties of gypsum building plasters. Constr. Build. Mater. 28, 506–511. https://doi.org/10.1016/j.conbuildmat.2011.06.072.
DOI: 10.1016/j.conbuildmat.2011.06.072
Google Scholar
[9]
Li, L., Wang, R., 2019. Early hydration of CSA cement modified with styrene–butadiene copolymer dispersion. Adv. Cem. Res. 1–14. https://doi.org/10.1680/jadcr.19.00038.
DOI: 10.1680/jadcr.19.00038
Google Scholar
[10]
Lothenbach, B., Durdziński, P., De Weerdt, K., 2015. Thermogravimetric analysis (TGA), in: A Practical Guide to Microstructural Analysis of Cementitious Materials. CRC Press, p.91–102. https://doi.org/10.1201/b19074.
Google Scholar
[11]
Marchon, D., Flatt, R.J., 2016. Impact of chemical admixtures on cement hydration, Science and Technology of Concrete Admixtures. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100693-1.00012-6.
DOI: 10.1016/b978-0-08-100693-1.00012-6
Google Scholar
[12]
Nguyen, H., Kinnunen, P., Gijbels, K., Carvelli, V., Sreenivasan, H., Kantola, A.M., Telkki, V.-V., Schroeyers, W., Illikainen, M., 2019. Ettringite-based binder from ladle slag and gypsum – The effect of citric acid on fresh and hardened state properties. Cem. Concr. Res. 123, 105800. https://doi.org/10.1016/j.cemconres.2019.105800.
DOI: 10.1016/j.cemconres.2019.105800
Google Scholar
[13]
Ouellet-Plamondon, C.M., Habert, G., 2016. Self-Compacted Clay based Concrete (SCCC): Proof-of-concept. J. Clean. Prod. 117, 160–168. https://doi.org/10.1016/j.jclepro.2015.12.048.
DOI: 10.1016/j.jclepro.2015.12.048
Google Scholar
[14]
Pelletier-Chaignat, L., Winnefeld, F., Lothenbach, B., Saout, G. Le, Müller, C.J., Famy, C., 2011. Influence of the calcium sulphate source on the hydration mechanism of Portland cement-calcium sulphoaluminate clinker-calcium sulphate binders. Cem. Concr. Compos. 33, 551–561. https://doi.org/10.1016/j.cemconcomp.2011.03.005.
DOI: 10.1016/j.cemconcomp.2011.03.005
Google Scholar
[15]
Pelletier, L., Winnefeld, F., Lothenbach, B., 2010. The ternary system Portland cement-calcium sulphoaluminate clinker-anhydrite: Hydration mechanism and mortar properties. Cem. Concr. Compos. 32, 497–507. https://doi.org/10.1016/j.cemconcomp.2010.03.010.
DOI: 10.1016/j.cemconcomp.2010.03.010
Google Scholar
[16]
Reiter, L., Wangler, T., Anton, A., Flatt, R.J., 2020. Setting on demand for digital concrete – Principles, measurements, chemistry, validation. Cem. Concr. Res. 132, 106047. https://doi.org/10.1016/j.cemconres.2020.106047.
DOI: 10.1016/j.cemconres.2020.106047
Google Scholar
[17]
Scrivener, K.L., John, V.M., Gartner, E.M., 2018. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 114, 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.
DOI: 10.1016/j.cemconres.2018.03.015
Google Scholar
[18]
Thomas, N.L., Birchall, J.D., 1983. The retarding action of sugars on cement hydration. Cem. Concr. Res. 13, 830–842. https://doi.org/10.1016/0008-8846(83)90084-4.
DOI: 10.1016/0008-8846(83)90084-4
Google Scholar
[19]
Zajac, M., Skocek, J., Bullerjahn, F., Ben Haha, M., 2016. Effect of retarders on the early hydration of calcium-sulpho-aluminate (CSA) type cements. Cem. Concr. Res. 84, 62–75. https://doi.org/10.1016/j.cemconres.2016.02.014.
DOI: 10.1016/j.cemconres.2016.02.014
Google Scholar
[20]
Zhang, Y., Yang, J., Cao, X., 2020. Effects of several retarders on setting time and strength of building gypsum. Constr. Build. Mater. 240, 117927. https://doi.org/10.1016/j.conbuildmat.2019.117927.
DOI: 10.1016/j.conbuildmat.2019.117927
Google Scholar