Comparison of Numerical HMT Codes to Simulate MBV Test of Hemp-Earth Composites

Article Preview

Abstract:

Bio-based and earth materials are growingly used for the building envelopes because of their numerous benefits such as slight environmental impact, great hygrothermal performances, effective regulation of the perceived indoor air quality and human comfort. In such materials, the phenomenon of mass transfer is complex and has a great impact on the performance of building envelope. Therefore, it is important to identify and understand the hygrothermal phenomena to be able to simulate accurately the envelope behavior. Nevertheless, the classical models that depict hygric transport within building materials seem not accurate enough for bio-based materials as they are simplified on several points of view. The correlation that exists between water content and relative humidity is mostly simplified and is modeled by a single curve, the hygric storage capacity is often overstated and the hysteresis is neglected. This paper deals with numerical study of hygric transfer within hemp-earth building material by using WUFI® Pro 6.5, a commercial software, and TMC code developed at the LGCGM (Moissette and Bart, 2009) . This code was validated regarding EN 15026 standard (Moissette and Bart, 2009) and has evolved over the years by integrating the hysteresis phenomena (Aït-Oumeziane et al., 2015). Thus, a significant enhancement of the numerical simulations on desorption phase was shown. This study investigates the simulation of MBV test performed on a hemp-earth material for which only the adsorption curve is known as input. Missing parameters (water vapor permeability and desorption curve) are fitted considering the first cycle of MBV test with TMC code. Then, MBV test is simulated with WUFI® Pro 6.5 and TMC code without and with hysteresis. The results highlight the need to include hysteresis to accurately simulate dynamic hygric phenomena, and show that it is possible to find missing parameters by fitting dynamic solicitations.

You might also be interested in these eBooks

Info:

Pages:

369-376

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ait Oumeziane, Y., 2013. Evaluation des performances hygrothermiques d'une paroi par simulation numérique : application aux parois en béton de chanvre (Theses). INSA de Rennes.

Google Scholar

[2] Aït Oumeziane, Y., Bart, M., Moissette, S., Lanos, C., 2014. Hysteretic Behaviour and Moisture Buffering of Hemp Concrete. Transp Porous Med 103, 515–533. https://doi.org/10.1007/s11242-014-0314-7.

DOI: 10.1007/s11242-014-0314-7

Google Scholar

[3] Aït-Oumeziane, Y., Bart, M., Moissette, S., Lanos, C., Collet, F., Pretot, S., 2015. Hysteresis phenomenon in hemp concrete. Academic Journal of Civil Engineering 33, 547–554. https://doi.org/10.26168/icbbm2015.85.

DOI: 10.1080/19401493.2016.1216166

Google Scholar

[4] Busser, T., Berger, J., Piot, A., Pailha, M., Woloszyn, M., 2018. Dynamic experimental method for identification of hygric parameters of a hygroscopic material. Building and Environment 131, 197–209. https://doi.org/10.1016/j.buildenv.2018.01.002.

DOI: 10.1016/j.buildenv.2018.01.002

Google Scholar

[5] Carmeliet, J., Janssen, H., 2005. Hysteresis and moisture buffering of wood, Proceedings of the Nordic Symposium on Building Physics (2005).

Google Scholar

[6] Colinart, T., Vinceslas, T., Lenormand, H., Menibus, A.H.D., Hamard, E., Lecompte, T., 2020. Hygrothermal properties of light-earth building materials. Journal of Building Engineering 29, 101134. https://doi.org/10.1016/j.jobe.2019.101134.

DOI: 10.1016/j.jobe.2019.101134

Google Scholar

[7] Collet, F., Chamoin, J., Pretot, S., Lanos, C., 2013. Comparison of the hygric behaviour of three hemp concretes. Energy and Buildings 62, 294–303. https://doi.org/10.1016/j.enbuild.2013.03.010.

DOI: 10.1016/j.enbuild.2013.03.010

Google Scholar

[8] Collet, F., Pretot, S., 2014. Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Construction and Building Materials 65, 612–619. https://doi.org/10.1016/j.conbuildmat. 2014.05.039.

DOI: 10.1016/j.conbuildmat.2014.05.039

Google Scholar

[9] COMSOL Multiphysics® Software - Understand, Predict, and Optimize (de), 1986. URL https://www.comsol.fr/comsol-multiphysics (accessed 2.2.21).

Google Scholar

[10] DELPHIN (de), 2006. URL http://www.bauklimatik-dresden.de/delphin/index.php?aLa=en (accessed 2.2.21).

Google Scholar

[11] Ferroukhi M-Y., Limam K., 2017. Experimental validation of a HAM-BES co-simulation approach. Energy.

DOI: 10.1016/j.egypro.2017.11.247

Google Scholar

[12] Procedia 139, 517-523. https://doi.org/10.1016/j.egypro.2017.11.247Huang, H.-C., Tan, Y.-C., Liu, C.-W., Chen, C.-H., 2005. A novel hysteresis model in unsaturated soil. Hydrol. Process. 19, 1653–1665. https://doi.org/10.1002/hyp.5594.

DOI: 10.1002/hyp.5594

Google Scholar

[13] Künzel, H.M., Kiessl, K., 1996. Calculation of heat and moisture transfer in exposed building components. International Journal of Heat and Mass Transfer 40, 159–167. https://doi.org/10.1016/S0017-9310(96)00084-1.

DOI: 10.1016/s0017-9310(96)00084-1

Google Scholar

[14] Kwiatkowski, J., Woloszyn, M., Roux, J.-J., 2011. Influence of sorption isotherm hysteresis effect on indoor climate and energy demand for heating. Applied Thermal Engineering 31, 1050–1057. https://doi.org/10.1016/j.applthermaleng.2010.11.030.

DOI: 10.1016/j.applthermaleng.2010.11.030

Google Scholar

[15] Kwiatkowski, J., Woloszyn, M., Roux, J.-J., 2009. Modelling of hysteresis influence on mass transfer in building materials. Building and Environment 44, 633–642. https://doi.org/10.1016/j.buildenv.2008.05.006.

DOI: 10.1016/j.buildenv.2008.05.006

Google Scholar

[16] Lelievre, D., Colinart, T., Glouannec, P., 2014. Hygrothermal behavior of bio-based building materials including hysteresis effects: Experimental and numerical analyses. Energy and Buildings 84, 617–627. https://doi.org/10.1016/j.enbuild.2014.09.013.

DOI: 10.1016/j.enbuild.2014.09.013

Google Scholar

[17] Lewis, W.K., 1962. The evaporation of a liquid into a gas. International Journal of Heat and Mass Transfer 5, 109–112. https://doi.org/10.1016/0017-9310(62)90118-7.

DOI: 10.1016/0017-9310(62)90118-7

Google Scholar

[18] Mazhoud, B., 2018. Elaboration et caractérisation mécanique, hygrique et thermique de composites bio-sourcés 213.

Google Scholar

[19] Moissette, S., Bart, M., 2009. VALIDATION D'UN CODE DE TRANSFERT DE CHALEUR ET D'HUMIDITÉ DANS UNE PAROI SELON LA NORME EN 15026.

Google Scholar

[20] Promis, G., Douzane, O., Tran Le, A.D., Langlet, T., 2018. Moisture hysteresis influence on mass transfer through bio-based building materials in dynamic state. Energy and Buildings 166, 450–459. https://doi.org/10.1016/j.enbuild.2018.01.067.

DOI: 10.1016/j.enbuild.2018.01.067

Google Scholar

[21] Rode, C., Peuhkuri, R.H., Hansen, K.K., Time, B., Svennberg, K., Arfvidsson, J., Ojanen, T., 2005. NORDTEST project on moisture buffer value of materials, in: AIVC Conference Energy Performance Regulation,: Ventilation in Relation to the Energy Performance of Buildings. Bruxelles, Belgique, p.47–52.

DOI: 10.1520/stp45403s

Google Scholar

[22] Ronzino, A., Corrado, V., 2015. Measuring the Hygroscopic Properties of Porous Media in Transient Regime. From the Material Level to the Whole Building HAM Simulation of a Coated Room. Energy Procedia 78, 1501–1506. https://doi.org/10.1016/j.egypro.2015.11.177.

DOI: 10.1016/j.egypro.2015.11.177

Google Scholar

[23] Strandberg-de Bruijn, P., Johansson, P., 2014. Moisture transport properties of lime–hemp concrete determined over the complete moisture range. Biosystems Engineering 122, 31–41. https://doi.org/10.1016/j.biosystemseng.2014.03.001.

DOI: 10.1016/j.biosystemseng.2014.03.001

Google Scholar

[24] Van Genuchten, M., 1980. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1. Soil Science Society of America Journal 44. https://doi.org/10.2136/sssaj1980.03615995004400050002x.

DOI: 10.2136/sssaj1980.03615995004400050002x

Google Scholar

[25] Workshop on Moisture Buffer Capacity - Summary Report, (2003).

Google Scholar

[26] WUFI (de), 2021. URL https://wufi.de/de/ (accessed 2.2.21).

Google Scholar

[27] Zhang, M., Qin, M., Rode, C., Chen, Z., 2017. Moisture buffering phenomenon and its impact on building energy consumption. Applied Thermal Engineering 124, 337–345. https://doi.org/10.1016/j.applthermaleng. 2017.05.173.

DOI: 10.1016/j.applthermaleng.2017.05.173

Google Scholar