[1]
Ait Oumeziane, Y., 2013. Evaluation des performances hygrothermiques d'une paroi par simulation numérique : application aux parois en béton de chanvre (Theses). INSA de Rennes.
Google Scholar
[2]
Aït Oumeziane, Y., Bart, M., Moissette, S., Lanos, C., 2014. Hysteretic Behaviour and Moisture Buffering of Hemp Concrete. Transp Porous Med 103, 515–533. https://doi.org/10.1007/s11242-014-0314-7.
DOI: 10.1007/s11242-014-0314-7
Google Scholar
[3]
Aït-Oumeziane, Y., Bart, M., Moissette, S., Lanos, C., Collet, F., Pretot, S., 2015. Hysteresis phenomenon in hemp concrete. Academic Journal of Civil Engineering 33, 547–554. https://doi.org/10.26168/icbbm2015.85.
DOI: 10.1080/19401493.2016.1216166
Google Scholar
[4]
Busser, T., Berger, J., Piot, A., Pailha, M., Woloszyn, M., 2018. Dynamic experimental method for identification of hygric parameters of a hygroscopic material. Building and Environment 131, 197–209. https://doi.org/10.1016/j.buildenv.2018.01.002.
DOI: 10.1016/j.buildenv.2018.01.002
Google Scholar
[5]
Carmeliet, J., Janssen, H., 2005. Hysteresis and moisture buffering of wood, Proceedings of the Nordic Symposium on Building Physics (2005).
Google Scholar
[6]
Colinart, T., Vinceslas, T., Lenormand, H., Menibus, A.H.D., Hamard, E., Lecompte, T., 2020. Hygrothermal properties of light-earth building materials. Journal of Building Engineering 29, 101134. https://doi.org/10.1016/j.jobe.2019.101134.
DOI: 10.1016/j.jobe.2019.101134
Google Scholar
[7]
Collet, F., Chamoin, J., Pretot, S., Lanos, C., 2013. Comparison of the hygric behaviour of three hemp concretes. Energy and Buildings 62, 294–303. https://doi.org/10.1016/j.enbuild.2013.03.010.
DOI: 10.1016/j.enbuild.2013.03.010
Google Scholar
[8]
Collet, F., Pretot, S., 2014. Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Construction and Building Materials 65, 612–619. https://doi.org/10.1016/j.conbuildmat. 2014.05.039.
DOI: 10.1016/j.conbuildmat.2014.05.039
Google Scholar
[9]
COMSOL Multiphysics® Software - Understand, Predict, and Optimize (de), 1986. URL https://www.comsol.fr/comsol-multiphysics (accessed 2.2.21).
Google Scholar
[10]
DELPHIN (de), 2006. URL http://www.bauklimatik-dresden.de/delphin/index.php?aLa=en (accessed 2.2.21).
Google Scholar
[11]
Ferroukhi M-Y., Limam K., 2017. Experimental validation of a HAM-BES co-simulation approach. Energy.
DOI: 10.1016/j.egypro.2017.11.247
Google Scholar
[12]
Procedia 139, 517-523. https://doi.org/10.1016/j.egypro.2017.11.247Huang, H.-C., Tan, Y.-C., Liu, C.-W., Chen, C.-H., 2005. A novel hysteresis model in unsaturated soil. Hydrol. Process. 19, 1653–1665. https://doi.org/10.1002/hyp.5594.
DOI: 10.1002/hyp.5594
Google Scholar
[13]
Künzel, H.M., Kiessl, K., 1996. Calculation of heat and moisture transfer in exposed building components. International Journal of Heat and Mass Transfer 40, 159–167. https://doi.org/10.1016/S0017-9310(96)00084-1.
DOI: 10.1016/s0017-9310(96)00084-1
Google Scholar
[14]
Kwiatkowski, J., Woloszyn, M., Roux, J.-J., 2011. Influence of sorption isotherm hysteresis effect on indoor climate and energy demand for heating. Applied Thermal Engineering 31, 1050–1057. https://doi.org/10.1016/j.applthermaleng.2010.11.030.
DOI: 10.1016/j.applthermaleng.2010.11.030
Google Scholar
[15]
Kwiatkowski, J., Woloszyn, M., Roux, J.-J., 2009. Modelling of hysteresis influence on mass transfer in building materials. Building and Environment 44, 633–642. https://doi.org/10.1016/j.buildenv.2008.05.006.
DOI: 10.1016/j.buildenv.2008.05.006
Google Scholar
[16]
Lelievre, D., Colinart, T., Glouannec, P., 2014. Hygrothermal behavior of bio-based building materials including hysteresis effects: Experimental and numerical analyses. Energy and Buildings 84, 617–627. https://doi.org/10.1016/j.enbuild.2014.09.013.
DOI: 10.1016/j.enbuild.2014.09.013
Google Scholar
[17]
Lewis, W.K., 1962. The evaporation of a liquid into a gas. International Journal of Heat and Mass Transfer 5, 109–112. https://doi.org/10.1016/0017-9310(62)90118-7.
DOI: 10.1016/0017-9310(62)90118-7
Google Scholar
[18]
Mazhoud, B., 2018. Elaboration et caractérisation mécanique, hygrique et thermique de composites bio-sourcés 213.
Google Scholar
[19]
Moissette, S., Bart, M., 2009. VALIDATION D'UN CODE DE TRANSFERT DE CHALEUR ET D'HUMIDITÉ DANS UNE PAROI SELON LA NORME EN 15026.
Google Scholar
[20]
Promis, G., Douzane, O., Tran Le, A.D., Langlet, T., 2018. Moisture hysteresis influence on mass transfer through bio-based building materials in dynamic state. Energy and Buildings 166, 450–459. https://doi.org/10.1016/j.enbuild.2018.01.067.
DOI: 10.1016/j.enbuild.2018.01.067
Google Scholar
[21]
Rode, C., Peuhkuri, R.H., Hansen, K.K., Time, B., Svennberg, K., Arfvidsson, J., Ojanen, T., 2005. NORDTEST project on moisture buffer value of materials, in: AIVC Conference Energy Performance Regulation,: Ventilation in Relation to the Energy Performance of Buildings. Bruxelles, Belgique, p.47–52.
DOI: 10.1520/stp45403s
Google Scholar
[22]
Ronzino, A., Corrado, V., 2015. Measuring the Hygroscopic Properties of Porous Media in Transient Regime. From the Material Level to the Whole Building HAM Simulation of a Coated Room. Energy Procedia 78, 1501–1506. https://doi.org/10.1016/j.egypro.2015.11.177.
DOI: 10.1016/j.egypro.2015.11.177
Google Scholar
[23]
Strandberg-de Bruijn, P., Johansson, P., 2014. Moisture transport properties of lime–hemp concrete determined over the complete moisture range. Biosystems Engineering 122, 31–41. https://doi.org/10.1016/j.biosystemseng.2014.03.001.
DOI: 10.1016/j.biosystemseng.2014.03.001
Google Scholar
[24]
Van Genuchten, M., 1980. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1. Soil Science Society of America Journal 44. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
DOI: 10.2136/sssaj1980.03615995004400050002x
Google Scholar
[25]
Workshop on Moisture Buffer Capacity - Summary Report, (2003).
Google Scholar
[26]
WUFI (de), 2021. URL https://wufi.de/de/ (accessed 2.2.21).
Google Scholar
[27]
Zhang, M., Qin, M., Rode, C., Chen, Z., 2017. Moisture buffering phenomenon and its impact on building energy consumption. Applied Thermal Engineering 124, 337–345. https://doi.org/10.1016/j.applthermaleng. 2017.05.173.
DOI: 10.1016/j.applthermaleng.2017.05.173
Google Scholar