Tackling Variability of Clay to Provide a Robust Binder

Article Preview

Abstract:

Locally available and with infinite recycling possibilities, the use of earth as building material leads to one of the lowest environmental impacts in the construction sector. Recent advances in the earth materials field have been made based on concrete and ceramics technologies to facilitate its uses in dense areas. It is possible to modify clay particle interactions and the material's whole behavior by adding inorganic dispersants and flocculants into clay paste. Earth becomes easy to cast and unmold into formworks, and by removing cement in its composition, poured earth can reach a low CO2 emission rate. Even if this technology is promising, further work has to be performed, as it cannot be implemented on earth from excavation sites with high variability. Tackling the clay nature variability is now the main issue to push this product on the market with robust properties. This research investigates the robustness of the poured earth binder. In this way, several clays (three montmorillonites, two kaolinites, and binary mixes at different proportions) were investigated. Their compacity (C) was determined following the water demand protocol with Vicat apparatus and compared to their consistency properties (liquidity and plasticity limits), and a correlation between these values is established. Different clay pastes prepared at different solid volume fractions were tested to define the influence of the clay nature on the paste consistency evolution. The results showed that clay nature for paste at high solid volume fraction does not influence constituency's evolution when their respectivecompacity is taking into account. It can be suggested that for a clay binder with a consistency close to C, which might be mandatory for poured earth application, only the swelling capacity might influence the mix design.

You might also be interested in these eBooks

Info:

Pages:

382-387

Citation:

Online since:

January 2022

Funder:

The publication of this article was funded by the ETH Zurich 10.13039/501100003006

Export:

Share:

Citation:

* - Corresponding Author

[1] Andrade, F.A., Al-Qureshi, H.A., Hotza, D., 2011. Measuring the plasticity of clays: A review. Appl. Clay Sci. https://doi.org/10.1016/j.clay.2010.10.028.

DOI: 10.1016/j.clay.2010.10.028

Google Scholar

[2] Ardant, D., Brumaud, C., Habert, G., 2020. Influence of additives on poured earth strength development. Mater. Struct. Constr. 53, 1–17. https://doi.org/10.1617/s11527-020-01564-y.

DOI: 10.1617/s11527-020-01564-y

Google Scholar

[3] Castellini, E., Berthold, C., Malferrari, D., Bernini, F., 2013. Sodium hexametaphosphate interaction with 2:1 clay minerals illite and montmorillonite. Appl. Clay Sci. 83–84, 162–170. https://doi.org/10.1016/j.clay.2013.08.031.

DOI: 10.1016/j.clay.2013.08.031

Google Scholar

[4] Feng, T.-W., 2001. A linear log d – log w model for the determination of consistency limits of soils . Can. Geotech. J. 38, 1335–1342. https://doi.org/10.1139/t01-061.

DOI: 10.1139/t01-061

Google Scholar

[5] Fitton, T., Seddon, K., 2012. Relating Atterberg limits to rheology, in: Proceedings of the 15th International Seminar on Paste and Thickened Tailings. Australian Centre for Geomechanics, Perth, p.273–284. https://doi.org/10.36487/acg_rep/1263_23_fitton.

DOI: 10.36487/acg_rep/1263_23_fitton

Google Scholar

[6] Gasnier, H., 2019. Construire en terres d'excavation, un enjeu pour la ville durable. (PhD Thesis). Université Grenoble Alpes (CoMue). France.

Google Scholar

[7] Guihéneuf, S., 2020. Formulation et renforts de blocs en matériau terre pour une utilisation structurelle. (PhD Thesis) Université de Bretagne Sud, France.

Google Scholar

[8] Julloux, A., Brumaud, C., Habert, G., Perrot, A., 2020. Variability of clay in poured earth, in: Proceedings of the8th Internationale Fachtagung für Lehmbau (LEHM 2020) (virtual), Online Weimar: Dachverband Lehm e.V.

Google Scholar

[9] Hamard, E., Lemercier, B., Cazacliu, B., Razakamanantsoa, A., Morel, J.C., 2018. A new methodology to identify and quantify material resource at a large scale for earth construction – Application to cob in Brittany. Constr. Build. Mater. 170, 485–497. https://doi.org/10.1016/j.conbuildmat.2018.03.097.

DOI: 10.1016/j.conbuildmat.2018.03.097

Google Scholar

[10] Koumoto, T., Houlsby, G.T., 2001. Theory and practice of the fall cone test. Géotechnique 51, 701–712. https://doi.org/10.1680/geot.2001.51.8.701.

DOI: 10.1680/geot.51.8.701.40475

Google Scholar

[11] Landrou, G., Brumaud, C., Plötze, M.L., Winnefeld, F., Habert, G., 2018. A fresh look at dense clay paste: Deflocculation and thixotropy mechanisms. Colloids Surfaces A Physicochem. Eng. Asp. 539, 252–260. https://doi.org/10.1016/j.colsurfa.2017.12.029.

DOI: 10.1016/j.colsurfa.2017.12.029

Google Scholar

[12] Llatas, C., 2011. A model for quantifying construction waste in projects according to the European waste list. Waste Manag. 31, 1261–1276. https://doi.org/10.1016/j.wasman. 2011.01.023.

DOI: 10.1016/j.wasman.2011.01.023

Google Scholar

[13] Lootens, D., Jousset, P., Martinie, L., Roussel, N., Flatt, R.J., 2009. Yield stress during setting of cement pastes from penetration tests. Cem. Concr. Res. 39, 401–408. https://doi.org/10.1016/j.cemconres.2009.01.012.

DOI: 10.1016/j.cemconres.2009.01.012

Google Scholar

[14] Moevus, M., Jorand, Y., Olagnon, C., Maximilien, S., Anger, R., Fontaine, L., Arnaud, L., 2016. Earthen construction: an increase of the mechanical strength by optimizing the dispersion of the binder phase. Mater. Struct. Constr. 49, 1555–1568. https://doi.org/10.1617/s11527-015-0595-5.

DOI: 10.1617/s11527-015-0595-5

Google Scholar

[15] Perrot, A., Rangeard, D., Lecompte, T., 2018. Field-oriented tests to evaluate the workability of cob and adobe. Mater. Struct. Constr. 51, 1–10. https://doi.org/10.1617/s11527-018-1181-4.

DOI: 10.1617/s11527-018-1181-4

Google Scholar

[16] Perrot, A., Rangeard, D., Levigneur, A., 2016. Linking rheological and geotechnical properties of kaolinite materials for earthen construction. Mater. Struct. Constr. https://doi.org/10.1617/s11527-016-0813-9.

DOI: 10.1617/s11527-016-0813-9

Google Scholar

[17] Pinel, A., Jorand, Y., Olagnon, C., Charlot, A., Fleury, E., 2017. Towards poured earth construction mimicking cement solidification: demonstration of feasibility via a biosourced polymer. Mater. Struct. Constr. 50, 1–17. https://doi.org/10.1617/s11527-017-1092-9.

DOI: 10.1617/s11527-017-1092-9

Google Scholar

[18] Rojat, F., Hamard, E., Fabbri, A., Carnus, B., McGregor, F., 2020. Towards an easy decision tool to assess soil suitability for earth building. Constr. Build. Mater. 257, 119544. https://doi.org/10.1016/j.conbuildmat.2020.119544.

DOI: 10.1016/j.conbuildmat.2020.119544

Google Scholar

[19] Sedran, T., De Larrard, F., Le Guen, L., 2007. Détermination de la compacité des ciments et additions minérales à la sonde de Vicat, Bulletin des Laboratoires des Ponts et Chaussées.

DOI: 10.1016/s0152-9668(02)80022-5

Google Scholar

[20] Vinceslas,T., 2019. Caractérisation d'éco-matériaux terre-chanvre en prenant en compte la variabilité des ressources disponibles localement. (PhD Thesis) Université de Bretagne Sud, France.

Google Scholar

[21] Tourtelot, J., Ghattassi, I., Le Roy, R., Bourgès, A., Keita, E., 2021. Yield stress measurement for earth-based building materials: the weighted plunger test. Mater. Struct. 54. https://doi.org/10.1617/s11527-020-01588-4.

DOI: 10.1617/s11527-020-01588-4

Google Scholar

[22] Vieira, C.S., Pereira, P.M., 2015. Use of recycled construction and demolition materials in geotechnical applications: A review. Resour. Conserv. Recycl. https://doi.org/10.1016/ j.resconrec.2015.07.023.

Google Scholar