[1]
Andrade, F.A., Al-Qureshi, H.A., Hotza, D., 2011. Measuring the plasticity of clays: A review. Appl. Clay Sci. https://doi.org/10.1016/j.clay.2010.10.028.
DOI: 10.1016/j.clay.2010.10.028
Google Scholar
[2]
Ardant, D., Brumaud, C., Habert, G., 2020. Influence of additives on poured earth strength development. Mater. Struct. Constr. 53, 1–17. https://doi.org/10.1617/s11527-020-01564-y.
DOI: 10.1617/s11527-020-01564-y
Google Scholar
[3]
Castellini, E., Berthold, C., Malferrari, D., Bernini, F., 2013. Sodium hexametaphosphate interaction with 2:1 clay minerals illite and montmorillonite. Appl. Clay Sci. 83–84, 162–170. https://doi.org/10.1016/j.clay.2013.08.031.
DOI: 10.1016/j.clay.2013.08.031
Google Scholar
[4]
Feng, T.-W., 2001. A linear log d – log w model for the determination of consistency limits of soils . Can. Geotech. J. 38, 1335–1342. https://doi.org/10.1139/t01-061.
DOI: 10.1139/t01-061
Google Scholar
[5]
Fitton, T., Seddon, K., 2012. Relating Atterberg limits to rheology, in: Proceedings of the 15th International Seminar on Paste and Thickened Tailings. Australian Centre for Geomechanics, Perth, p.273–284. https://doi.org/10.36487/acg_rep/1263_23_fitton.
DOI: 10.36487/acg_rep/1263_23_fitton
Google Scholar
[6]
Gasnier, H., 2019. Construire en terres d'excavation, un enjeu pour la ville durable. (PhD Thesis). Université Grenoble Alpes (CoMue). France.
Google Scholar
[7]
Guihéneuf, S., 2020. Formulation et renforts de blocs en matériau terre pour une utilisation structurelle. (PhD Thesis) Université de Bretagne Sud, France.
Google Scholar
[8]
Julloux, A., Brumaud, C., Habert, G., Perrot, A., 2020. Variability of clay in poured earth, in: Proceedings of the8th Internationale Fachtagung für Lehmbau (LEHM 2020) (virtual), Online Weimar: Dachverband Lehm e.V.
Google Scholar
[9]
Hamard, E., Lemercier, B., Cazacliu, B., Razakamanantsoa, A., Morel, J.C., 2018. A new methodology to identify and quantify material resource at a large scale for earth construction – Application to cob in Brittany. Constr. Build. Mater. 170, 485–497. https://doi.org/10.1016/j.conbuildmat.2018.03.097.
DOI: 10.1016/j.conbuildmat.2018.03.097
Google Scholar
[10]
Koumoto, T., Houlsby, G.T., 2001. Theory and practice of the fall cone test. Géotechnique 51, 701–712. https://doi.org/10.1680/geot.2001.51.8.701.
DOI: 10.1680/geot.51.8.701.40475
Google Scholar
[11]
Landrou, G., Brumaud, C., Plötze, M.L., Winnefeld, F., Habert, G., 2018. A fresh look at dense clay paste: Deflocculation and thixotropy mechanisms. Colloids Surfaces A Physicochem. Eng. Asp. 539, 252–260. https://doi.org/10.1016/j.colsurfa.2017.12.029.
DOI: 10.1016/j.colsurfa.2017.12.029
Google Scholar
[12]
Llatas, C., 2011. A model for quantifying construction waste in projects according to the European waste list. Waste Manag. 31, 1261–1276. https://doi.org/10.1016/j.wasman. 2011.01.023.
DOI: 10.1016/j.wasman.2011.01.023
Google Scholar
[13]
Lootens, D., Jousset, P., Martinie, L., Roussel, N., Flatt, R.J., 2009. Yield stress during setting of cement pastes from penetration tests. Cem. Concr. Res. 39, 401–408. https://doi.org/10.1016/j.cemconres.2009.01.012.
DOI: 10.1016/j.cemconres.2009.01.012
Google Scholar
[14]
Moevus, M., Jorand, Y., Olagnon, C., Maximilien, S., Anger, R., Fontaine, L., Arnaud, L., 2016. Earthen construction: an increase of the mechanical strength by optimizing the dispersion of the binder phase. Mater. Struct. Constr. 49, 1555–1568. https://doi.org/10.1617/s11527-015-0595-5.
DOI: 10.1617/s11527-015-0595-5
Google Scholar
[15]
Perrot, A., Rangeard, D., Lecompte, T., 2018. Field-oriented tests to evaluate the workability of cob and adobe. Mater. Struct. Constr. 51, 1–10. https://doi.org/10.1617/s11527-018-1181-4.
DOI: 10.1617/s11527-018-1181-4
Google Scholar
[16]
Perrot, A., Rangeard, D., Levigneur, A., 2016. Linking rheological and geotechnical properties of kaolinite materials for earthen construction. Mater. Struct. Constr. https://doi.org/10.1617/s11527-016-0813-9.
DOI: 10.1617/s11527-016-0813-9
Google Scholar
[17]
Pinel, A., Jorand, Y., Olagnon, C., Charlot, A., Fleury, E., 2017. Towards poured earth construction mimicking cement solidification: demonstration of feasibility via a biosourced polymer. Mater. Struct. Constr. 50, 1–17. https://doi.org/10.1617/s11527-017-1092-9.
DOI: 10.1617/s11527-017-1092-9
Google Scholar
[18]
Rojat, F., Hamard, E., Fabbri, A., Carnus, B., McGregor, F., 2020. Towards an easy decision tool to assess soil suitability for earth building. Constr. Build. Mater. 257, 119544. https://doi.org/10.1016/j.conbuildmat.2020.119544.
DOI: 10.1016/j.conbuildmat.2020.119544
Google Scholar
[19]
Sedran, T., De Larrard, F., Le Guen, L., 2007. Détermination de la compacité des ciments et additions minérales à la sonde de Vicat, Bulletin des Laboratoires des Ponts et Chaussées.
DOI: 10.1016/s0152-9668(02)80022-5
Google Scholar
[20]
Vinceslas,T., 2019. Caractérisation d'éco-matériaux terre-chanvre en prenant en compte la variabilité des ressources disponibles localement. (PhD Thesis) Université de Bretagne Sud, France.
Google Scholar
[21]
Tourtelot, J., Ghattassi, I., Le Roy, R., Bourgès, A., Keita, E., 2021. Yield stress measurement for earth-based building materials: the weighted plunger test. Mater. Struct. 54. https://doi.org/10.1617/s11527-020-01588-4.
DOI: 10.1617/s11527-020-01588-4
Google Scholar
[22]
Vieira, C.S., Pereira, P.M., 2015. Use of recycled construction and demolition materials in geotechnical applications: A review. Resour. Conserv. Recycl. https://doi.org/10.1016/ j.resconrec.2015.07.023.
Google Scholar