Effect of Plant Fibres on the Variability of Cob Materials

Article Preview

Abstract:

Earthen materials have different nature components and present a high variability comparing to conventional materials; researchers try to settle it down for a future normalization as environmentally efficient material. But there is a need in energy to do it, either directly (compaction, organic matter extraction, particle screening to get the best particle size distribution ...) or indirectly by including inefficient materials from an environmental perspective (cement, limestone ...). The aim of this study is to follow the variability problematic of cob materials by comparing and understanding variation level of the hygrothermal characteristics due to fibres nature and fibres content. We found that plant fibres (hemp, flax and hay) act as a stabilizer for dry bulk density; at 1% fibres substitute, hemp fibre composites show the highest coefficient of variation on the thermal properties (6.1% on thermal conductivity, 18.74% on specific heat capacity) but flax fibres show the highest mean values. Increasing hay stalk content induces the spread of the hygrothermal properties inside their range of variaation.

You might also be interested in these eBooks

Info:

Pages:

405-412

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Al Rim, K., Ledhem, A., Douzane, O., Dheilly, R. M., Quenedec, M., 1999. Influence of the proportion of wood on the thermal and mechanical performances of clay-cement-wood composites, Cement and Concrete composites 21, 269 – 276, https://doi.org/10.1016/S0958-9465(99)00008-6.

DOI: 10.1016/s0958-9465(99)00008-6

Google Scholar

[2] Célino, A., Fréour, S., Jacquemin, F., Casari, P., 2014. The hygroscopic behavior of plant fibres: a review, frontiers in chemistry, https://doi.org/ 10.3389/fchem.2013.00043.

DOI: 10.3389/fchem.2013.00043

Google Scholar

[3] Baghaei, B., Skrifvars, M., Salehi, M., Bashir, T., Rissanen, M., Noussiainen, P., 2014. Novel aligned hemp fibre reinforcement for structural biocomposites: Porosity, water absorption, mechanical performances and viscoelastic behavior, Composites Part A: Applied Science and Manufacturing 61, 1-12. https://doi.org/10.1016/j.compositesa.2014.01.017.

DOI: 10.1016/j.compositesa.2014.01.017

Google Scholar

[4] Barnaure, M., Bonnet S., Poullain P., Earth buildings with local materials : assessing the variability of properties measured using non-destructive methods, submitted for second reviewing in CBM journal, January (2021).

DOI: 10.1016/j.conbuildmat.2021.122613

Google Scholar

[5] De Kergariou, C., Le Duigou, A., Popineau, V., Gager, V., et al., 2021. Measure of porosity in flax fibres reinforced polylactic acid biocomposites. Composites Part A: Applied Science and Manufacturing 141, https://doi.org/10.1016/j.compositesa.(2020).

DOI: 10.1016/j.compositesa.2020.106183

Google Scholar

[6] Hall M., Allisson, D., 2009. Analysis of the hygrothermal functional properties of stabilised rammed earth materials, Building and Environment 44, 1935 – 1942. https://doi.org/10.1016/j.buildenv.2009.01.007.

DOI: 10.1016/j.buildenv.2009.01.007

Google Scholar

[7] Hamard, E., Lemercier, B., Cazacliu, B., Razakamanantsoa, A., Morel, J. C., 2018. A new methodology to identify and quantify material resource at a large scale for earth construction – Application to cob in Brittany, Construction and Building materials 170, 485-497, https://doi.org/10.1016/j.conbuildmat.2018.03.097.

DOI: 10.1016/j.conbuildmat.2018.03.097

Google Scholar

[8] Laborel-Préneron, A., Magniont, C., Aubert, J-E., 2018. Hygrothermal properties of unfired earth bricks: Effect of barley straw, hemp shiv and corn cob addition, Energy and Buildings 178, 265-278. https://doi.org/10.1016/j.enbuild.2018.08.021.

DOI: 10.1016/j.enbuild.2018.08.021

Google Scholar

[9] Mohamed, A. E. F. K., 2013. Improvement of swelling clay properties using hay fibres, Construction and Building Materials 38, https://doi.org/1 10.1016/j.conbuildmat.2012.08.031.

DOI: 10.1016/j.conbuildmat.2012.08.031

Google Scholar

[10] Niyigena, C., Amziane, S., Chateauneuf, A., Arnaud, L., et al., 2016. Variability of the mechanical properties of hemp concrete. Materials Today Communications 7, 122–133. https://doi.org/10.1016/j.mtcomm.2016.03.003.

DOI: 10.1016/j.mtcomm.2016.03.003

Google Scholar

[11] Olacia, E., Pisselo, A., Chiodo, V., Maisano, S., Frazzisa, A., Cabeza, L., 2020. Sustainable adobe bricks with seagrass fibres. Mechanical and thermal properties characterization, Construction and Building Materials 239, https://doi.org/10.1016/j.conbuildmat.2019.117669.

DOI: 10.1016/j.conbuildmat.2019.117669

Google Scholar

[12] Peijic, B. M., Kostic, M. M., Skundric, P. D., Praskalo, J. Z., 2008. The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibres, Bioresource Technology 99, 7152-7159. https://doi.org/10.1016/j.biortech.2007.12.073.

DOI: 10.1016/j.biortech.2007.12.073

Google Scholar

[13] Rojat, F., Hamard, E., Fabbri, A., Carnus, B., McGregor, F., 2020. Towards an easy decision tool to assess soil suitability for earth building, Construction and Building materials 257, https://doi.org/10.1016/j.conbuildmat.2020.119544.

DOI: 10.1016/j.conbuildmat.2020.119544

Google Scholar

[14] Liuzzi, S., Rubino, C., Stefanizzi, P., Petrella, A., Boghetich, A., Casavola, C., Pappaletterra, G., Hygrothermal properties of clayey plasters with olive fibers, Construction and Building materials 158, 24-32. https://doi.org/10.1016/j.conbuildmat.2017.10.013.

DOI: 10.1016/j.conbuildmat.2017.10.013

Google Scholar