[1]
Al Rim, K., Ledhem, A., Douzane, O., Dheilly, R. M., Quenedec, M., 1999. Influence of the proportion of wood on the thermal and mechanical performances of clay-cement-wood composites, Cement and Concrete composites 21, 269 – 276, https://doi.org/10.1016/S0958-9465(99)00008-6.
DOI: 10.1016/s0958-9465(99)00008-6
Google Scholar
[2]
Célino, A., Fréour, S., Jacquemin, F., Casari, P., 2014. The hygroscopic behavior of plant fibres: a review, frontiers in chemistry, https://doi.org/ 10.3389/fchem.2013.00043.
DOI: 10.3389/fchem.2013.00043
Google Scholar
[3]
Baghaei, B., Skrifvars, M., Salehi, M., Bashir, T., Rissanen, M., Noussiainen, P., 2014. Novel aligned hemp fibre reinforcement for structural biocomposites: Porosity, water absorption, mechanical performances and viscoelastic behavior, Composites Part A: Applied Science and Manufacturing 61, 1-12. https://doi.org/10.1016/j.compositesa.2014.01.017.
DOI: 10.1016/j.compositesa.2014.01.017
Google Scholar
[4]
Barnaure, M., Bonnet S., Poullain P., Earth buildings with local materials : assessing the variability of properties measured using non-destructive methods, submitted for second reviewing in CBM journal, January (2021).
DOI: 10.1016/j.conbuildmat.2021.122613
Google Scholar
[5]
De Kergariou, C., Le Duigou, A., Popineau, V., Gager, V., et al., 2021. Measure of porosity in flax fibres reinforced polylactic acid biocomposites. Composites Part A: Applied Science and Manufacturing 141, https://doi.org/10.1016/j.compositesa.(2020).
DOI: 10.1016/j.compositesa.2020.106183
Google Scholar
[6]
Hall M., Allisson, D., 2009. Analysis of the hygrothermal functional properties of stabilised rammed earth materials, Building and Environment 44, 1935 – 1942. https://doi.org/10.1016/j.buildenv.2009.01.007.
DOI: 10.1016/j.buildenv.2009.01.007
Google Scholar
[7]
Hamard, E., Lemercier, B., Cazacliu, B., Razakamanantsoa, A., Morel, J. C., 2018. A new methodology to identify and quantify material resource at a large scale for earth construction – Application to cob in Brittany, Construction and Building materials 170, 485-497, https://doi.org/10.1016/j.conbuildmat.2018.03.097.
DOI: 10.1016/j.conbuildmat.2018.03.097
Google Scholar
[8]
Laborel-Préneron, A., Magniont, C., Aubert, J-E., 2018. Hygrothermal properties of unfired earth bricks: Effect of barley straw, hemp shiv and corn cob addition, Energy and Buildings 178, 265-278. https://doi.org/10.1016/j.enbuild.2018.08.021.
DOI: 10.1016/j.enbuild.2018.08.021
Google Scholar
[9]
Mohamed, A. E. F. K., 2013. Improvement of swelling clay properties using hay fibres, Construction and Building Materials 38, https://doi.org/1 10.1016/j.conbuildmat.2012.08.031.
DOI: 10.1016/j.conbuildmat.2012.08.031
Google Scholar
[10]
Niyigena, C., Amziane, S., Chateauneuf, A., Arnaud, L., et al., 2016. Variability of the mechanical properties of hemp concrete. Materials Today Communications 7, 122–133. https://doi.org/10.1016/j.mtcomm.2016.03.003.
DOI: 10.1016/j.mtcomm.2016.03.003
Google Scholar
[11]
Olacia, E., Pisselo, A., Chiodo, V., Maisano, S., Frazzisa, A., Cabeza, L., 2020. Sustainable adobe bricks with seagrass fibres. Mechanical and thermal properties characterization, Construction and Building Materials 239, https://doi.org/10.1016/j.conbuildmat.2019.117669.
DOI: 10.1016/j.conbuildmat.2019.117669
Google Scholar
[12]
Peijic, B. M., Kostic, M. M., Skundric, P. D., Praskalo, J. Z., 2008. The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibres, Bioresource Technology 99, 7152-7159. https://doi.org/10.1016/j.biortech.2007.12.073.
DOI: 10.1016/j.biortech.2007.12.073
Google Scholar
[13]
Rojat, F., Hamard, E., Fabbri, A., Carnus, B., McGregor, F., 2020. Towards an easy decision tool to assess soil suitability for earth building, Construction and Building materials 257, https://doi.org/10.1016/j.conbuildmat.2020.119544.
DOI: 10.1016/j.conbuildmat.2020.119544
Google Scholar
[14]
Liuzzi, S., Rubino, C., Stefanizzi, P., Petrella, A., Boghetich, A., Casavola, C., Pappaletterra, G., Hygrothermal properties of clayey plasters with olive fibers, Construction and Building materials 158, 24-32. https://doi.org/10.1016/j.conbuildmat.2017.10.013.
DOI: 10.1016/j.conbuildmat.2017.10.013
Google Scholar