[1]
Anand, C. K.; Amor B., 2017. Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renew. Sustain. Energy Rev. 67, 408-416. http://dx.doi.org/10.1016/j.rser.2016.09.058.
DOI: 10.1016/j.rser.2016.09.058
Google Scholar
[2]
Berge, B., 2009. The Ecology of Building Materials, Architectural Press, London, 2nd ed.
Google Scholar
[3]
Birgisdóttir, H., et al., 2017. IEA EBC annex 57 evaluation of embodied energy and CO2eq for building construction,. Case Studies demonstrating Embodied Energy and Embodied Greenhouse Gas Emissions in Building, Energy and Buildings, 154, 72–80. http://dx.doi.org/10.1016/j.enbuild. 2017.08.030.
DOI: 10.1016/j.enbuild.2017.08.030
Google Scholar
[4]
Bjørn, A.; Hauschild, M.Z., 2015. Introducing carrying capacity-based normalisation in LCA: framework and development of references at midpoint level, International Journal of Life Cycle Assessment, 20, 1005–1018. https://doi-org.ezproxy.biblio.polito.it/10.1007/s11367-015-0899-2.
DOI: 10.1007/s11367-015-0899-2
Google Scholar
[5]
BMI - Deutsche Bundesministerium des Innern, für Bau und Heimat, 2021. Ökobau data 2021. Deutsche Bundesministerium des Innern, für Bau und Heimat, Berlin [www.oekobaudat.de].
DOI: 10.1007/978-3-658-27029-2_12
Google Scholar
[6]
Bocco, A.; Gerace, M.; Pollini, S., 2019. The environmental impact of Sieben Linden Ecovillage, Abingdon: Routledge [https://www-taylorfrancis-com.ezproxy.biblio.polito.it/books/environmental-impact-sieben-linden-ecovillage-andrea-bocco-martina-gerace-susanna-pollini/e/10.4324/9780429032349].
DOI: 10.4324/9780429032349
Google Scholar
[7]
Bocco Guarneri, A., 2020. Vegetarian Architecture. Case Studies on Building and Nature. Jovis, Berlin.
Google Scholar
[8]
De Decker, K., 2018. Bedazzled by Energy Efficiency, Low-Tech Magazine, 9 January [https://www.lowtechmagazine. com/2018/01/bedazzled-by-energy-efficiency.html].
Google Scholar
[9]
Dixit, M.K., 2017. Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters, Renewable and Sustainable Energy Reviews, 79, 390–413. http://dx.doi.org/10.1016/j.rser.2017.05.051.
DOI: 10.1016/j.rser.2017.05.051
Google Scholar
[10]
Ghavami, K., et al. (eds.), 2014. Non-Conventional Materials and Technologies for Sustainable Engineering, Dürnten: Trans Tech Publications. ISBN: 978-3-03785-981-0.
Google Scholar
[11]
Habert, G., et al., 2020. Carbon budgets for buildings: harmonising temporal, spatial and sectoral dimensions. Buildings and Cities, 1(1), 429–452. http://doi.org/10.5334/bc.47.
DOI: 10.5334/bc.47
Google Scholar
[12]
Hammond, G.; Jones, C., 2011. Inventory of carbon & energy, University of Bath [https://www.carbonsolutions.com/Resources/ ICE%20V2.0%20-%20Jan%202011.xls].
Google Scholar
[13]
Harries, K.A.; Sharma, B. (eds.), 2016. Nonconventional and Vernacular Construction Materials, Woodhead Publishing, Sawston.
Google Scholar
[14]
Hoxha, E., et al., 2017. Influence of construction material uncertainties on residential building LCA reliability. J. Clean. Prod. 144, 33-47. http://dx.doi.org/10.1016/j.jclepro.2016.12.068.
DOI: 10.1016/j.jclepro.2016.12.068
Google Scholar
[15]
Ibn-Mohammed, T., et al., 2013. Operational vs. embodied emissions in buildings—A review of current trends. Energy Build. 66, 232–245. http://dx.doi.org/10.1016/j.enbuild.2013.07.026.
DOI: 10.1016/j.enbuild.2013.07.026
Google Scholar
[16]
Jones, C.; Hammond, G., 2019. Inventory of carbon & energy. Circular Ecology and University of Bath [http://www.circularecology.com/embodied-energy-and-carbon-footprint-database.html].
Google Scholar
[17]
Lewandowska, A., et al., 2015. Between full LCA and energy certification methodology—a comparison of six methodological variants of buildings environmental assessment. Int. J. Life Cycle Assess. 20, 9–22. http://dx.doi.org/10.1007/s11367-014-0805-3.
DOI: 10.1007/s11367-014-0805-3
Google Scholar
[18]
Martínez-Rocamora, A.; et al., 2016. LCA databases focused on construction materials: A review, Renewable and Sustainable Energy Reviews, 58, 565–573. http://dx.doi.org/10.1016/j.rser.2015.12.243.
DOI: 10.1016/j.rser.2015.12.243
Google Scholar
[19]
Moncaster, A.M.; Song, J.-Y., 2012. A comparative review of existing data and methodologies for calculating embodied energy and carbon of buildings. Int. J. Sustain. Build Technol. Urban Dev. 3 (1), 26-36. http://dx.doi.org/10.1080/2093761X.2012.673915.
DOI: 10.1080/2093761x.2012.673915
Google Scholar
[20]
Moncaster, A.M., et al., 2019. Widening understanding of low embodied impact buildings: Results and recommendations from 80 multi-national quantitative and qualitative case studies, Journal of Cleaner Production, 235, 378-393. https://doi.org/10.1016/j.jclepro.2019.06.233.
DOI: 10.1016/j.jclepro.2019.06.233
Google Scholar
[21]
Nykjær-Brejnrod, K., et al., 2017. The absolute environmental performance of buildings, Buildings and environment, 119, 87–98. http://dx.doi.org/10.1016/j.buildenv.2017.04.003.
DOI: 10.1016/j.buildenv.2017.04.003
Google Scholar
[22]
Optis, M.; Wild, P., 2010. Inadequate documentation in published life cycle energy reports on buildings. Int. J. Life Cycle Assess. 15, 644–651. http://dx.doi.org/10.1007/s11367-010-0203-4.
DOI: 10.1007/s11367-010-0203-4
Google Scholar
[23]
Pomponi, F.; Moncaster, A.M., 2016. Embodied carbon mitigation and reduction in the built environment – What does the evidence say? J. Environ. Manag. 181, 687-700. http://dx.doi.org/10.1016/j.jenvman.2016.08.036.
DOI: 10.1016/j.jenvman.2016.08.036
Google Scholar
[24]
Ramesh, T., et al., 2010. Life cycle energy analysis of buildings: An overview. Energy Build. 42, 1592–1600. http://dx.doi.org/10.1016/j.enbuild.2010.05.007.
DOI: 10.1016/j.enbuild.2010.05.007
Google Scholar
[25]
Rasmussen, F.N,. et al., 2018. Analysing methodological choices in calculations of embodied energy and GHG emissions from buildings. Energy and Buildings, 158, 1487-1498. https://doi.org/10.1016/j.enbuild.2017.11.013.
DOI: 10.1016/j.enbuild.2017.11.013
Google Scholar
[26]
Rinkinen, J.; Shove, E.; Torriti, J., (eds.), 2019. Energy Fables: Challenging Ideas in the Energy Sector, Routledge.
DOI: 10.4324/9780429397813
Google Scholar
[27]
Röck, M., et al., 2019. Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation. Applied Energy 114107. https://doi.org/10.1016/j.apenergy.2019.114107.
DOI: 10.1016/j.apenergy.2019.114107
Google Scholar
[28]
Röck, M., et al., 2020. Embodied GHG emissions of buildings – Critical reflection of benchmark comparison and in-depth analysis of drivers. IOP Conf. Ser.: Earth Environ. Sci. 588 032048.
DOI: 10.1088/1755-1315/588/3/032048
Google Scholar
[29]
Säynäjoki, A.,et al., 2017. Can life-cycle assessment produce reliable policy guidelines in the building sector? Environ Res Lett;12. https://doi.org/10.1088/1748-9326/aa54ee.
DOI: 10.1088/1748-9326/aa54ee
Google Scholar
[30]
Schwartz, Y., et al., 2018. The life cycle carbon footprint of refurbished and new buildings – A systematic review of case studies. Renewable and Sustainable Energy Reviews, 81, 231-241. https://doi.org/10.1016/j.rser.2017.07.061.
DOI: 10.1016/j.rser.2017.07.061
Google Scholar
[31]
Sertorio, L.; Renda, E., 2008. Cento watt per il prossimo miliardo di anni. Bollati Boringhieri, Torino.
Google Scholar
[32]
Shove, E., 2010. Beyond the ABC: climate change policy and theories of social change, Environment and planning A, 42, 6, 1273-1285.
DOI: 10.1068/a42282
Google Scholar
[33]
Simonen, K., et al., 2017. Benchmarking the Embodied Carbon of Buildings. Technology|Architecture + Design, 1:2, 208-218. https://doi.org/10.1080/24751448.2017.1354623.
DOI: 10.1080/24751448.2017.1354623
Google Scholar
[34]
Takano, A., et al., 2014. Comparison of life cycle assessment databases: a case study on building assessment. Build. Environ. 79, 20–30. http://dx.doi.org/10.1016/j.buildenv.2014.04.025.
DOI: 10.1016/j.buildenv.2014.04.025
Google Scholar
[35]
Vale, R.; Vale, B., 2009. Time to Eat the Dog? The Real Guide to Sustainable Living, Thames & Hudson, London.
Google Scholar
[36]
Vale, R.; Vale, B. (eds.), 2013. Living within a Fair Share Ecological Footprint, Routledge, Abingdon.
DOI: 10.4324/9780203126448
Google Scholar
[37]
Walker, P. et al. (eds.), 2009. 11th International Conference on Non-conventional Materials and Technologies. NOCMAT 2009. Conference proceedings, Bath: University of Bath.
Google Scholar
[38]
Woolley, T., 2006. Natural building. A guide to materials and techniques, The Crowood Press, Ramsbury.
Google Scholar
[39]
Woolley, T., 2013. Low Impact Building. Housing using renewable materials, Wiley-Blackwell, Chichester.
Google Scholar