[1]
Bowen, G., Haitao, T., Donghai, D., Jiayu, W., Rui, X., Anhua, X., Huaxin, C., 2018. Effect of Citric Acid on the Time-Dependent Rheological Properties of Magnesium Oxychloride Cement. J. Mater. Civ. Eng. 30, 4018275. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002451.
DOI: 10.1061/(asce)mt.1943-5533.0002451
Google Scholar
[2]
Chau, C.K., Chan, J., Li, Z., 2009. Influences of fly ash on magnesium oxychloride mortar. Cem. Concr. Compos. 31, 250–254. https://doi.org/10.1016/j.cemconcomp.2009.02.011.
DOI: 10.1016/j.cemconcomp.2009.02.011
Google Scholar
[3]
Chen, F., 2017. Study on preparation and properties of modified magnesium oxysulfate cements. Chem. Eng. Trans. 62, 973–978. https://doi.org/10.3303/CET1762163.
Google Scholar
[4]
Demir, İ., Doğan, C., 2020. Physical and Mechanical Properties of Hempcrete. Open Waste Manag. J. 13, 26–34. https://doi.org/10.2174/1874312902014010026.
DOI: 10.2174/1874312902014010026
Google Scholar
[5]
Gong, W., Wang, N., Zhang, N., Han, W., Qiao, H., 2020. Water resistance and a comprehensive evaluation model of magnesium oxychloride cement concrete based on Taguchi and entropy weight method. Constr. Build. Mater. 260, 119817. https://doi.org/10.1016/j.conbuildmat.2020.119817.
DOI: 10.1016/j.conbuildmat.2020.119817
Google Scholar
[6]
Guan, H., Lu, J.F., Ba, H.J., 2009. On the volume stability of Magnesium oxychloride cement-based materials. Shenzhen Daxue Xuebao (Ligong Ban)/Journal Shenzhen Univ. Sci. Eng. 26, 296–300.
Google Scholar
[7]
He, P., Poon, C.S., Tsang, D.C.W., 2020. Water resistance of magnesium oxychloride cement wood board with the incorporation of supplementary cementitious materials. Constr. Build. Mater. 255, 119145. https://doi.org/10.1016/j.conbuildmat.2020.119145.
DOI: 10.1016/j.conbuildmat.2020.119145
Google Scholar
[8]
Jin, Y., Xiao, L., Luo, F., 2013. Influence of fly ash on the properties of magnesium oxychloride cement. Adv. Mater. Res. 662, 406–408. https://doi.org/10.4028/www.scientific.net/ AMR.662.406.
DOI: 10.4028/www.scientific.net/amr.662.406
Google Scholar
[9]
Kidalova, L., Terpakova, E., Stevulova, N., 2011. MgO cement as suitable conventional binders replacement in hemp concrete. Pollack Period. 6, 115–122. https://doi.org/10.1556/Pollack. 6.2011.3.11.
DOI: 10.1556/pollack.6.2011.3.11
Google Scholar
[10]
Li, G., Yu, Y., Li, J., Wang, Y., Liu, H., 2003. Experimental study on urban refuse/magnesium oxychloride cement compound floor tile. Cem. Concr. Res. 33, 1663–1668. https://doi.org/10.1016/S0008-8846(03)00136-4.
DOI: 10.1016/s0008-8846(03)00136-4
Google Scholar
[11]
Li, Y., Yu, H., Zheng, L., Wen, J., Wu, C., Tan, Y., 2013. Compressive strength of fly ash magnesium oxychloride cement containing granite wastes. Constr. Build. Mater. 38, 1–7. https://doi.org/10.1016/j.conbuildmat.2012.06.016.
DOI: 10.1016/j.conbuildmat.2012.06.016
Google Scholar
[12]
Qiao, H., Cheng, Q., Wang, J., Shi, Y., 2014. The application review of magnesium oxychloride cement. J. Chem. Pharm. Res. 6, 180–185.
Google Scholar
[13]
Sinka, M., Sahmenko, G., 2013. Sustainable thermal insulation biocomposites from locally available hemp and lime, in: Vide. Tehnologija. Resursi - Environment, Technology, Resources. Rezekne Higher Education Institution, p.73–77. https://doi.org/ 10.17770/etr2013vol1.828.
DOI: 10.17770/etr2013vol1.828
Google Scholar
[14]
Sinka, M., Van den Heede, P., De Belie, N., Bajare, D., Sahmenko, G., Korjakins, A., 2018a. Comparative life cycle assessment of magnesium binders as an alternative for hemp concrete. Resour. Conserv. Recycl. 133, 288–299. https://doi.org/10.1016/j.resconrec.2018.02.024.
DOI: 10.1016/j.resconrec.2018.02.024
Google Scholar
[15]
Sinka, M., Van den Heede, P., De Belie, N., Bajare, D., Sahmenko, G., Korjakins, A., 2018b. Comparative life cycle assessment of magnesium binders as an alternative for hemp concrete. Resour. Conserv. Recycl. 133, 288–299. https://doi.org/10.1016/j.resconrec.2018.02.024.
DOI: 10.1016/j.resconrec.2018.02.024
Google Scholar
[16]
Walling, S.A., Provis, J.L., 2016. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future? Chem. Rev. 116, 4170–4204. https://doi.org/10.1021/ acs.chemrev. 5b00463.
DOI: 10.1021/acs.chemrev.5b00463
Google Scholar
[17]
Xu, K., Xi, J., Guo, Y., Dong, S., 2012. Effects of a new modifier on the water-resistance of magnesite cement tiles. Solid State Sci. 14, 10–14. https://doi.org/10.1016/j.solidstatesciences.2011.08.009.
DOI: 10.1016/j.solidstatesciences.2011.08.009
Google Scholar