[1]
Amziane, S., Sonebi, M., 2016. Overview on bio-based building material made with plant aggregate Overview on bio-based building material made with plant aggregate 31–38.
DOI: 10.21809/rilemtechlett.2016.9
Google Scholar
[2]
Andreola, V.M., Gloria, M.Y.R., Santos, D.O.J., Filho, R.D.T., 2019. Partial Replacement Of Cement By Combination Of Fly Ash And Metakaolin In Bamboo Bio-Concretes. Acad. J. Civ. Eng. 37, 102–106.
Google Scholar
[3]
Arehart, J.H., Nelson, W.S., Srubar, W. V., 2020. On the theoretical carbon storage and carbon sequestration potential of hempcrete. J. Clean. Prod. 266, 121846. https://doi.org/10.1016/j.jclepro.2020.121846.
DOI: 10.1016/j.jclepro.2020.121846
Google Scholar
[4]
Arrigoni, A., Pelosato, R., Melià, P., Ruggieri, G., Sabbadini, S., Dotelli, G., 2017. Life cycle assessment of natural building materials: the role of carbonation, mixture components and transport in the environmental impacts of hempcrete blocks. J. Clean. Prod. 149, 1051–1061. https://doi.org/10.1016/j.jclepro.2017.02.161.
DOI: 10.1016/j.jclepro.2017.02.161
Google Scholar
[5]
Brandão, M., Levasseur, A., Kirschbaum, M.U.F., Weidema, B.P., Cowie, A.L., Jørgensen, S.V., Hauschild, M.Z., Pennington, D.W., Chomkhamsri, K., 2013. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int. J. Life Cycle Assess. 18, 230–240. https://doi.org/10.1007/s11367-012-0451-6.
DOI: 10.1007/s11367-012-0451-6
Google Scholar
[6]
Caldas, L.R., Da Gloria, M.Y.R., Pittau, F., Andreola, V.M., Habert, G., Toledo Filho, R.D., 2020a. Environmental impact assessment of wood bio-concretes: Evaluation of the influence of different supplementary cementitious materials. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2020.121146.
DOI: 10.1016/j.conbuildmat.2020.121146
Google Scholar
[7]
Caldas, L.R., Saraiva, A.B., Andreola, V.M., Dias, R., Filho, T., 2020b. Bamboo bio-concrete as an alternative for buildings ' climate change mitigation and adaptation. Constr. Build. Mater. 263, 120652. https://doi.org/10.1016/j.conbuildmat.2020.120652.
DOI: 10.1016/j.conbuildmat.2020.120652
Google Scholar
[8]
Caldas, L.R., Saraiva, A.B., Lucena, A.F.P., Da Gloria, M.Y., Santos, A.S., Filho, R.D.T., 2021. Building materials in a circular economy: The case of wood waste as CO2-sink in bio concrete. Resour. Conserv. Recycl. 166. https://doi.org/10.1016/j.resconrec.2020.105346.
DOI: 10.1016/j.resconrec.2020.105346
Google Scholar
[9]
CEN, E.C.F.S., 2013. EN 15804:2013 - Standards Publication Sustainability of construction works — Environmental product declarations — Core rules for the product category of construction products. Int. Stand.
DOI: 10.3403/30259256
Google Scholar
[10]
da Gloria, M.Y.R., Andreola, V.M., dos Santos, D.O.J., Pepe, M., Toledo Filho, R.D., 2020. A comprehensive approach for designing workable bio-based cementitious composites. J. Build. Eng. https://doi.org/10.1016/j.jobe.2020.101696.
DOI: 10.1016/j.jobe.2020.101696
Google Scholar
[11]
Damineli, B.L., Kemeid, F.M., Aguiar, P.S., John, V.M., 2010. Measuring the eco-efficiency of cement use. Cem. Concr. Compos. https://doi.org/10.1016/j.cemconcomp.2010.07.009.
DOI: 10.1016/j.cemconcomp.2010.07.009
Google Scholar
[12]
Florentin, Y., Pearlmutter, D., Givoni, B., Gal, E., 2017. A life-cycle energy and carbon analysis of hemp-lime bio-composite building materials. Energy Build. 156, 293–305. https://doi.org/10.1016/j.enbuild.2017.09.097.
DOI: 10.1016/j.enbuild.2017.09.097
Google Scholar
[13]
Guest, G., Cherubini, F., Strømman, A.H., 2012. Global Warming Potential of Carbon Dioxide Emissions from Biomass Stored in the Anthroposphere and Used for Bioenergy at End of Life 17. https://doi.org/10.1111/j.1530-9290.2012.00507.x.
DOI: 10.1111/j.1530-9290.2012.00507.x
Google Scholar
[14]
Habert, G., Miller, S.A., John, V.M., Provis, J.L., Favier, A., Horvath, A., Scrivener, K.L., 2020. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-020-0093-3.
DOI: 10.1038/s43017-020-0093-3
Google Scholar
[15]
Hoxha, E., Passer, A., Saade, M.R.M., Trigaux, D., Shuttleworth, A., Pittau, F., Allacker, K., Habert, G., 2020. Biogenic carbon in buildings: a critical overview of LCA methods. Build. Cities 1, 504–524. https://doi.org/10.5334/bc.46.
DOI: 10.5334/bc.46
Google Scholar
[16]
Pittau, F., Krause, F., Lumia, G., Habert, G., 2018. Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Build. Environ. 129, 117–129. https://doi.org/10.1016/j.buildenv.2017.12.006.
DOI: 10.1016/j.buildenv.2017.12.006
Google Scholar
[17]
UNEP, 2019. Global Status Report for Buildings and Construction. Towards a zero-emissions, effi cient and resilient buildings and constructi on sector.
Google Scholar