[1]
Auvinen, J., Wirtanen, L., 2008. The influence of photocatalytic interior paints on indoor air quality. Atmos. Environ. 42, 4101–4112. https://doi.org/10.1016/j.atmosenv.2008.01.031.
DOI: 10.1016/j.atmosenv.2008.01.031
Google Scholar
[2]
Ball, R.J., Molinari, M., Grant, J., Parker, S.C., 2016. Atomistic Modelling for the Study of Dissolution and Carbonation of Lime, in: 36th Cement and Concrete Science Conference. Cardiff, UK.
Google Scholar
[3]
Boynton, R.S., 1980. Chemistry and Technology of Lime and Limestone. John Wiley & Sons, Inc., New York.
Google Scholar
[4]
BS EN 459-1, 2015. Building lime. Definitions, specifications and conformity criteria.
Google Scholar
[5]
Cizer, Ö., Ruiz-Agudo, E., Rodriguez-Navarro, C., 2018. Kinetic effect of carbonic anhydrase enzyme on the carbonation reaction of lime mortar. Int. J. Archit. Herit. 12, 779–789. https://doi.org/10.1080/15583058.2017.1413604.
DOI: 10.1080/15583058.2017.1413604
Google Scholar
[6]
Donmez, D., Pinho, L., Patel, B., Desam, P., Campanella, O.H., 2021. Characterization of starch–water interactions and their effects on two key functional properties: starch gelatinization and retrogradation. Curr. Opin. Food Sci. 39, 103–109. https://doi.org/10.1016/j.cofs.2020.12.018.
DOI: 10.1016/j.cofs.2020.12.018
Google Scholar
[7]
Elert, K., Rodriguez-Navarro, C., Pardo, E.S., Hansen, E., Cazalla, O., 2002. Lime mortars for the conservation of historic buildings. Stud. Conserv. 47, 62–75. https://doi.org/10.1179/sic.2002.47.1.62.
DOI: 10.1179/sic.2002.47.1.62
Google Scholar
[8]
Flatt, R., Schober, I., 2012. Superplasticizers and the rheology of concrete, in: Roussel, N. (Ed.), Understanding the Rheology of Concrete. Woodhead Publishing, p.144–208.
DOI: 10.1533/9780857095282.2.144
Google Scholar
[9]
Guizani, C.; Lachenal, D., 2017. Controlling the Molecular Weight of Lignosulfonates by an Alkaline Oxidative Treatment at Moderate Temperatures and Atmospheric Pressure: A Size-Exclusion and Reverse-Phase Chromatography Study. Int. J. Mol. Sci. 18, 2520. https://doi.org/https://doi.org/10.3390/ijms18122520.
DOI: 10.3390/ijms18122520
Google Scholar
[10]
ISO, 2009. ISO13320 Particle Size Analysis - Laser Diffraction Methods, Part 1: General Principles.
Google Scholar
[11]
Janković, B., 2013. Thermal characterization and detailed kinetic analysis of Cassava starch thermo-oxidative degradation. Carbohydr. Polym. 95, 621–629. https://doi.org/10.1016/ j.carbpol.2013.03.038.
DOI: 10.1016/j.carbpol.2013.03.038
Google Scholar
[12]
Luis Fernández-Muñoz, J., Zelaya-Angel, O., Cruz-Orea, A., Sánchez-Sinencio, F., 2001. Phase Transitions in Amylose and Amylopectin under the Influence of Ca(OH)2 in Aqueous Solution. Anal. Sci. 17 Special, s308–s341. https://doi.org/ http://doi.org/10.14891/analscisp. 17icpp.0.s338.0.
Google Scholar
[13]
Mascolo, G., Mascolo, M.C., Vitale, A., Marino, O., 2010. Microstructure evolution of lime putty upon aging. J. Cryst. Growth 312, 2363–2368. https://doi.org/10.1016/j.jcrysgro.2010.05.020.
DOI: 10.1016/j.jcrysgro.2010.05.020
Google Scholar
[14]
Navrátilová, E., Tihlaříková, E., Neděla, V., Rovnaníková, P., Pavlík, J., 2017. Effect of the preparation of lime putties on their properties. Sci. Rep. 7, 1–9. https://doi.org/10.1038/s41598-017-17527-3.
DOI: 10.1038/s41598-017-17527-3
Google Scholar
[15]
Pesce, C., Pesce, G.L., Molinari, M., Richardson, A., 2021. Effects of organic additives on calcium hydroxide crystallisation during lime slaking. Cem. Concr. Res. 139. https://doi.org/10.1016/j.cemconres.2020.106254.
DOI: 10.1016/j.cemconres.2020.106254
Google Scholar
[16]
Rodriguez-navarro, C., Burgos-cara, A., Lorenzo, F. Di, Ruiz-agudo, E., Elert, K., 2020. Nonclassical Crystallization of Calcium Hydroxide via Amorphous Precursors and the Role of Additives. Cryst. Growth Des. https://doi.org/10.1021/acs.cgd.0c00241.
DOI: 10.1021/acs.cgd.0c00241
Google Scholar
[17]
Rodriguez-Navarro, C., Hansen, E., Ginell, W.S., 1998. Calcium Hydroxide Crystal Evolution upon Aging of Lime Putty. J. Am. Ceram. Soc. 81, 3032–3034. https://doi.org/10.1111/j.1151-2916.1998.tb02735.x.
DOI: 10.1111/j.1151-2916.1998.tb02735.x
Google Scholar
[18]
Rodriguez-Navarro, C., Ruiz-Agudo, E., Burgos-Cara, A., Elert, K., Hansen, E.F., 2017. Crystallization and Colloidal Stabilization of Ca(OH)2 in the Presence of Nopal Juice (Opuntia ficus indica): Implications in Architectural Heritage Conservation. Langmuir 33, 10936–10950. https://doi.org/10.1021/acs.langmuir.7b02423.
DOI: 10.1021/acs.langmuir.7b02423
Google Scholar
[19]
Stawski, D., 2008. New determination method of amylose content in potato starch. Food Chem. 110, 777–781. https://doi.org/10.1016/j.foodchem.2008.03.009.
DOI: 10.1016/j.foodchem.2008.03.009
Google Scholar
[20]
Thirumalini, S., Ravi, R., Rajesh, M., 2018. Experimental investigation on physical and mechanical properties of lime mortar: Effect of organic addition. J. Cult. Herit. 31, 97–104. https://doi.org/10.1016/j.culher.2017.10.009.
DOI: 10.1016/j.culher.2017.10.009
Google Scholar
[21]
Ukrainczyk, M., Gredičak, M., Jerić, I., Kralj, D., 2014. Interactions of scalenohedral calcite crystals with acidic amino acid derivatives of salicylic acid. Cryst. Growth Des. 14, 4335–4346. https://doi.org/10.1021/cg500396x.
DOI: 10.1021/cg500396x
Google Scholar
[22]
Yang, Fuwei, Bingjian Zhang, Q.M., 2010. Study of Sticky Rice - Lime Mortar Technology. Acc. Chem. Res. 43.
Google Scholar