[1]
Akinyemi, B.A., Elijah, A., Oluwasegun, A., Akpenpuun, D.T., Glory, O., 2020. The use of red earth, lateritic soils and quarry dust as an alternative building material in sandcrete block. Scientific African 7, 1–7. https://doi.org/10.1016/j.sciaf.2020.e00263.
DOI: 10.1016/j.sciaf.2020.e00263
Google Scholar
[2]
Bensalem, H., Aadjour, M., Hadi, H.E., Saber, N., Ouazzani, A.E., Mouttaqi, A., 2014. Evaluation de la qualité industrielle des argiles fibreuses de BLED RMEL, bassin du GHARB, MAROC. European Scientific Journal 10, 217–231.
Google Scholar
[3]
Curto, A., Lanzoni, L., Tarantino, A.M., Viviani, M., 2020. Shot-earth for sustainable constructions. Construction and Building Materials 239, 1–13.
DOI: 10.1016/j.conbuildmat.2019.117775
Google Scholar
[4]
Fang, Q.F., Zhang, H.W., Guo, Y., 2010. Thermal Decomposition of Dolomite. AMR 177, 617–619. https://doi.org/10.4028/www.scientific.net/AMR.177.617.
DOI: 10.4028/www.scientific.net/amr.177.617
Google Scholar
[5]
Gunasekaran, S., Anbalagan, G., 2007. Thermal decomposition of natural dolomite. Bull. Mater. Sci 30, 339–344.
DOI: 10.1007/s12034-007-0056-z
Google Scholar
[6]
Ji, J., Ge, Y., Balsam, W., Damuth, J.E., Chen, J., 2009. Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer (FTIR): A fast method for identifying Heinrich events in IODP Site U1308. Marine Geology 258, 60–68. https://doi.org/10.1016/j.margeo.2008.11.007.
DOI: 10.1016/j.margeo.2008.11.007
Google Scholar
[7]
Kouta, N., Saliba, J., Saiyouri, N., 2020. Effect of flax fibers on early age shrinkage and cracking of earth concrete. Construction and Building Materials 254, 1–12.
DOI: 10.1016/j.conbuildmat.2020.119315
Google Scholar
[8]
Mohd Shofri, M.F.S., Mohd Zaid, M.H., Matori, K.A., Fen, Y.W., Yaakob, Y., Jaafar, S.H., Wahab, S.A.A., Iwamoto, Y., 2020. Phase Transformation, Optical and Emission Performance of Zinc Silicate Glass-Ceramics Phosphor Derived from the ZnO–B2O3–SLS Glass System. Applied Sciences 10, 1–11. https://doi.org/10.3390/app10144940.
DOI: 10.3390/app10144940
Google Scholar
[9]
Priyadharshini, P., Ramamurthy, K., Robinson, R.G., 2017. Excavated soil waste as fine aggregate in fly ash based geopolymer mortar. Applied Clay Science 146, 81–91. https://doi.org/10.1016/j.clay.2017.05.038.
DOI: 10.1016/j.clay.2017.05.038
Google Scholar
[10]
Rodriguez-Blanco, J.D., Shaw, S., Benning, L.G., 2011. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, viavaterite. Nanoscale 3, 265–271. https://doi.org/10.1039/C0NR00589D.
DOI: 10.1039/c0nr00589d
Google Scholar
[11]
Rojat, F., Hamard, E., Fabbri, A., Carnus, B., McGregor, F., 2020. Towards an easy decision tool to assess soil suitability for earth building. Construction and Building Materials 1–11.
DOI: 10.1016/j.conbuildmat.2020.119544
Google Scholar
[12]
Senthil Kumar, R., Rajkumar, P., 2013. Characterization of minerals in air dust particles in the state of Tamilnadu, India through ftir spectroscopy. Atmos. Chem. Phys. Discuss. 13, 22221–22248. https://doi.org/10.5194/acpd-13-22221-2013.
DOI: 10.5194/acpd-13-22221-2013
Google Scholar
[13]
Voit, K., Zimmermann, T., 2015. Characteristics of selected concrete with tunnel excavation material. Construction and Building Materials 1–10.
DOI: 10.1016/j.conbuildmat.2015.10.016
Google Scholar
[14]
Walker, P., Stace, T., 1997. Properties of some cement stabilised compressed earth blocks and mortars. Mat. Struct. 30, 545–551. https://doi.org/10.1007/BF02486398.
DOI: 10.1007/bf02486398
Google Scholar