β-Cyclodextrin Substituted Polyoxyethylene in the Synthesize of Polycarboxylate Superplasticizers

Article Preview

Abstract:

In this study, the starch-based material β-cyclodextrin was used as the original material to substitute petrochemical product-polyoxyethylene (HPEG) to synthesize concrete admixture polycarboxylate superplasticizer (PCE). During the synthesis, β-cyclodextrin was first grafted on the PEO chain to prepare β-CD-HPEG by click reaction. Then β-CD-HPEG was used to substitute the macromonomer HPEG to synthesize β-CD-PCE. When the substitution amount HPEG was 3%, the synthesized β-CD-PCE showed better dispersion ability.

You might also be interested in these eBooks

Info:

Pages:

499-504

Citation:

Online since:

January 2022

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Fortes-Revilla C., Martinez-Remirez S., Blanco-Varela M. T., 2006. Modelling of slaked-lime metakaolin mortar engineering characteristics in terms of process variables. Cement & Concrete Composites. 28, 458-467 https://doi.org/10.1016/j.cemconcomp.2005.12.006.

DOI: 10.1016/j.cemconcomp.2005.12.006

Google Scholar

[2] Crepy L., Petit J., Wirquin E., Martin, P., Joly N., 2014. Synthesis and evaluation of starch-based polymers as potential dispersants in cement pastes and self-leveling compounds. Cement and Concrete Composites. 45, 29-38. https://doi.org/10.1016/j.cemconcomp.2013.09.004.

DOI: 10.1016/j.cemconcomp.2013.09.004

Google Scholar

[3] Izaguirre A., Lanas J., Álvarez J. I., 2010. Behaviour of a starch as a viscosity modifier for aerial lime-based mortars. Carbohydrate Polymers. 80(1), 222-228. https://doi.org/10.1016/j.carbpol.2009.11.010.

DOI: 10.1016/j.carbpol.2009.11.010

Google Scholar

[4] Jing, Z.; Zhu, H.; Wang, F. H.; Sui, H. Y.; Fan, J. T., 2011. Preparation of a new inorganic–organic composite flocculant used in solid–liquid separation for waste drilling fluid. Chem. Eng. J. 171, 350-356. https://doi.org/10.1016/j.cej.2011.03.100.

DOI: 10.1016/j.cej.2011.03.100

Google Scholar

[5] Khayat K. H., 1998. Viscosity-enhancing admixtures for cement-based materials — An overview. Cement & Concrete Composites. 20: 171-188. https://doi.org/10.1016/S0958-9465(98)80006-1.

DOI: 10.1016/s0958-9465(98)80006-1

Google Scholar

[6] Lachemi M., Hossain K. M. A., Lambros V., Lambros V., Nikinamubanzi P., Bouzoubaa N., 2004. Performance of new viscosity modifying admixtures in enhancing the rheological properties of cement paste. Cement and Concrete Research. 34(2), 185-193. https://doi.org/10.1016/S0008-8846(03)00233-3.

DOI: 10.1016/s0008-8846(03)00233-3

Google Scholar

[7] Lv H., Gao R., Cao Q., Li D., Duan J., 2012. Preparation and characterization of poly-carboxymethyl-β-cyclodextrin superplasticizer. Cement and Concrete Research. 42(10), 1356-1361. https://doi.org/10.1016/j.cemconres.2012.06.006.

DOI: 10.1016/j.cemconres.2012.06.006

Google Scholar

[8] Lv H., Gao R., Duan J., Li D., Cao Q., 2012. Effects of β-cyclodextrin side chains on the dispersing and retarding properties of polycarboxylate superplasticizers. Journal of Applied Polymer Science. 125(1), 396-404. https://doi.org/10.1002/app.35606.

DOI: 10.1002/app.35606

Google Scholar

[9] Xing, W.; Ngo, H-H.; Guo, W. S.; Wu, Z. Q., Nguyen, T.T.; Cullum, P.; Listowski, A.; Yang, N., 2010. Enhancement of the performance of anaerobic fluidized bed bioreactors (AFBBRs) by a new starch based flocculant. Sep. Purif. Technol. 72, 140-146. https://doi.org/10.1016/j.seppur.2010.01.015.

DOI: 10.1016/j.seppur.2010.01.015

Google Scholar

[10] Xu H., Sun S., Wei J., Yu Q., Shao Q., Lin C., 2015. β-Cyclodextrin as pendant groups of a polycarboxylate superplasticizer for enhancing clay tolerance. Industrial & Engineering Chemistry Research. 54(37), 9081-9088. https://doi.org/10.1021/acs.iecr.5b02578.

DOI: 10.1021/acs.iecr.5b02578

Google Scholar

[11] Yan Y., Ouzia A., Yu C., Liu J., Scrivemer K., 2020. Effect of a novel starch-based temperature rise inhibitor on cement hydration and microstructure development. Cement and Concrete Research. 129, 105961. https://doi.org/10.1016/j.cemconres.2019.105961.

DOI: 10.1016/j.cemconres.2019.105961

Google Scholar

[12] Zhang D., Ju B., Zhang S., He L., Yang J., 2007. The study on the dispersing mechanism of starch sulfonate as a water-reducing agent for cement. Carbohydrate Polymers. 70(4), 363-368. https://doi.org/10.1016/j.carbpol.2007.04.024.

DOI: 10.1016/j.carbpol.2007.04.024

Google Scholar

[13] Zhang D., Ju B., Zhang S., Yang J., 2007. Dispersing mechanism of carboxymethyl starch as water-reducing agent. Journal of Applied Polymer Science. 105(2), 486-491. https://doi.org/10.1002/app.26152.

DOI: 10.1002/app.26152

Google Scholar

[14] Zhang D., Ju B., Zhang S., Yang J., 2008. The study on the synthesis and action mechanism of starch succinate half ester as water-reducing agent with super retarding performance. Carbohydrate Polymers. 71(1), 80-84. https://doi.org/10.1016/j.carbpol.2007.05.020.

DOI: 10.1016/j.carbpol.2007.05.020

Google Scholar

[15] Zhang H., Wang W., Li Q., Tian Q., Li L., Liu J., 2018. A starch-based admixture for reduction of hydration heat in cement composites[J]. Construction and Building Materials, 173, 317-322. https://doi.org/10.1016/j.conbuildmat.2018.03.199.

DOI: 10.1016/j.conbuildmat.2018.03.199

Google Scholar