Porous Asphalt: A Comparison of Modified Optimized Asphalt Content and Conventional Optimized Asphalt Content

Article Preview

Abstract:

Indonesia is a tropical country with high rainfall, which necessitates pavement with higher void content and good drainage conditions. The quality of road pavement depends on the materials used. One type of asphalt mixture with high void content and permeability but low stability is porous asphalt. This is due to the composition of porous asphalt, which consists predominantly of coarse aggregates compared to fine aggregates. This study utilizes waste tires, Low-Density Polyethylene (LDPE), gilsonite, and 60/70 penetration asphalt as binders, referred to as modified asphalt, in porous asphalt mixtures. The objective of this study is to determine the Optimum Asphalt Content (OAC) using waste tires, LDPE, gilsonite, and 60/70 penetration asphalt as binders in porous asphalt mixtures and to compare it with the OAC of conventional asphalt. The method used in this research is based on the Australian Asphalt Pavement Association (AAPA) (2004) method, employing open-graded porous asphalt with a maximum aggregate size of 14 mm. According to AAPA (2004), OAC determination requires three parameters: Cantabro Loss (CL), Asphalt Flow Down (AFD), and Voids in Mix (VIM). The study began with testing the physical properties of aggregates and asphalt, both conventional and modified. After testing the physical properties, the next step was determining the optimum asphalt content. The OAC obtained for porous asphalt mixtures using modified asphalt as a binder was 5.3%, while the OAC for conventional asphalt was 5.75%, serving as a comparison.

You might also be interested in these eBooks

Info:

Pages:

23-31

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Gupta, D. Castro-Fresno, P. Lastra-Gonzalez, and J. Rodriguez-Hernandez, "Selection of fibers to improve porous asphalt mixtures using multi-criteria analysis," Constr. Build. Mater., vol. 266, p.121198, Jan. 2021.

DOI: 10.1016/j.conbuildmat.2020.121198

Google Scholar

[2] Zukisa, W. Alamsyah, and D. Basrin, "Pengaruh Penambahan Limbah Botol Plastik PET Sebagai Bahan Subtitusi Aspal Porus Penetrasi 60/70," Menara J. Tek. Sipil, vol. 18, no. 2, p.122–129, Jul. 2023.

DOI: 10.21009/jmenara.v18i2.35567

Google Scholar

[3] S. Chen, L. Gu, Z. Tu, T. Ma, and L. Kang, "Mechanical Properties of Porous Asphalt Mixtures Containing Styrene-Butadiene-Styrene and High-Viscosity Modifiers," J. Mater. Civ. Eng., vol. 35, no. 2, Art. no. 2, Feb. 2023.

DOI: 10.1061/(ASCE)MT.1943-5533.0004495

Google Scholar

[4] G. Firuliadhim and A. Aszharri, "Karakteristik Campuran Aspal Porous Menggunakan Aspal Modifikasi Cariphalte Dan Penambahan Gilsonite," PILAR, vol. 18, no. 2, p.33–38, 2023.

Google Scholar

[5] S. M. Saleh, R. Anggraini, and H. Aquina, "Karakteristik Campuran Aspal Porus Dengan Substitusi Styrofoam Pada Aspal Penetrasi 60/70," J. Tek. Sipil, vol. 21, no. 3, p.241–249, 2014.

DOI: 10.24815/jts.v1i3.10011

Google Scholar

[6] S. Salehi, M. Arashpour, J. Kodikara, and R. Guppy, "Sustainable pavement construction: A systematic literature review of environmental and economic analysis of recycled materials," J. Clean. Prod., vol. 313, p.127936, Sep. 2021.

DOI: 10.1016/j.jclepro.2021.127936

Google Scholar

[7] Tetra Oktaviani, Dina Tri Septiningtyas, and Wirdatun Nafiah Putri, "Functional Performance of Modified Porous Asphalt Mixtures with Gilsonite Additive," J. Inotera, vol. 9, no. 1, p.184–189, Jun. 2024.

DOI: 10.31572/inotera.Vol9.Iss1.2024.ID342

Google Scholar

[8] F. Dina, S. M. Saleh, and F. M. Suryani, "Karakteristik Penggunaan Parutan Ban Dalam Bekas Kendaraan Roda 4 Terhadap Campuran AC-BC," vol. 1, no. 1, 2019.

DOI: 10.31602/jk.v4i2.6424

Google Scholar

[9] H. A. Susanto, B. Mulyono, A. Widyaningrum, and W. Herry Purnomo, "Kinerja Perkerasan Aspal Berpori Dengan Campuran Limbah Plastik Dan Karet," J. Jalan Jemb., vol. 40, no. 1, p.32–43, Jul. 2023.

DOI: 10.58499/jatan.v40i1.1126

Google Scholar

[10] W. N. H. M. Sani, R. P. Jaya, K. A. Masri, and A. Dulaimi, "The Performance of a Hybrid Asphalt Mixture in Modifying Hot Mix Asphalt Properties," Jun. 11, 2024, In Review.

DOI: 10.21203/rs.3.rs-4494027/v1

Google Scholar

[11] F. Dina, S. M. Saleh, and F. M. Suryani, "Karakteristik Penggunaan Parutan Ban Dalam Bekas Kendaraan Roda 4 Terhadap Campuran AC-BC," vol. 1, no. 1, 2019.

DOI: 10.31602/jk.v4i2.6424

Google Scholar

[12] B. Abd. Razak and A. Erdiansa, "Karakteristik Campuran AC-WC dengan Penambahan Limbah Plastik Low Density Polyethylene (LDPE)," INTEK J. Penelit., vol. 3, no. 1, p.8–14, Apr. 2016.

DOI: 10.31963/intek.v3i1.9

Google Scholar

[13] A. A. Milad, A. S. B. Ali, and N. I. M. Yusoff, "A review of the utilisation of recycled waste material as an alternative modifier in asphalt mixtures," Civ. Eng. J., vol. 6, p.42–60, 2020.

DOI: 10.28991/cej-2020-sp(emce)-05

Google Scholar

[14] D. Kong, Y. Xiao, S. Wu, N. Tang, J. Ling, and F. Wang, "Comparative evaluation of designing asphalt treated base mixture with composite aggregate types," Constr. Build. Mater., vol. 156, p.819–827, Dec. 2017.

DOI: 10.1016/j.conbuildmat.2017.09.020

Google Scholar

[15] G. Firuliadhim and A. Aszharri, "Karakteristik Campuran Aspal Porous Menggunakan Aspal Modifikasi Cariphalte Dan Penambahan Gilsonite".

Google Scholar

[16] S. Tamalkhani, "Effect of oil palm fiber on some physical properties of porous asphalt/Tamalkhani Syammaun," University of Malaya, 2013.

Google Scholar

[17] AAPA, Open Graded Asphalt Design Guide. Asphalt Pavement Association. Australia. 2004.

Google Scholar

[18] M. A. H. Al-Jumaili, "Laboratory evaluation of modified porous asphalt mixtures," Appl Res J, vol. 8, p.2–3, 2016.

Google Scholar

[19] S. R. Harnaeni, P. R. Lestari, R. P. Balich, and G. Aulia, "Komparasi Karakteristik Marshall AC-BC dengan Penggunaan Limbah Ban Luar dan Limbah Steel Slag sebagai Pengganti Agregat Kasar," JRST J. Ris. Sains Dan Teknol., vol. 6, no. 2, p.211, Nov. 2022.

DOI: 10.30595/jrst.v6i2.15355

Google Scholar

[20] Y. Cheng, C. Chai, Y. Zhang, Y. Chen, and B. Zhu, "A New Eco-Friendly Porous Asphalt Mixture Modified by Crumb Rubber and Basalt Fiber," Sustainability, vol. 11, no. 20, p.5754, Oct. 2019.

DOI: 10.3390/su11205754

Google Scholar

[21] M. Y. Saputra, M. Agustien, and E. Kadarsa, "The Effect of Addition LDPE Plastic on Porous Asphalt Mixture," Reka Buana J. Ilm. Tek. Sipil Dan Tek. Kim., vol. 8, no. 1, p.88–100, Mar. 2023.

DOI: 10.33366/rekabuana.v8i1.4607

Google Scholar

[22] P. Lastra-González, E. Lizasoain-Arteaga, D. Castro-Fresno, and G. Flintsch, "Analysis of replacing virgin bitumen by plastic waste in asphalt concrete mixtures," Int. J. Pavement Eng., vol. 23, no. 8, p.2621–2630, 2022.

DOI: 10.1080/10298436.2020.1866760

Google Scholar

[23] A. I. Candra, S. W. Mudjanarko, Y. C. S. Poernomo, and P. Vitasmoro, "Analysis of the ratio of coarse aggregate to porous asphalt mixture," in Journal of Physics: Conference Series, IOP Publishing, 2020, p.042029.

DOI: 10.1088/1742-6596/1569/4/042029

Google Scholar

[24] G. M. Duarte and A. L. Faxina, "Asphalt concrete mixtures modified with polymeric waste by the wet and dry processes: A literature review," Constr. Build. Mater., vol. 312, p.125408, 2021.

DOI: 10.1016/j.conbuildmat.2021.125408

Google Scholar

[25] G. M. Duarte and A. L. Faxina, "Asphalt concrete mixtures modified with polymeric waste by the wet and dry processes: A literature review," Constr. Build. Mater., vol. 312, p.125408, Dec. 2021.

DOI: 10.1016/j.conbuildmat.2021.125408

Google Scholar

[26] A. Setyawan, "Design and properties of hot mixture porous asphalt for semi-flexible pavement applications," J. Penelit. Media Tek. Sipil Ed. Juli, 2005.

Google Scholar