[1]
C. Liu, F. Chen, Y. Wu, Z. Zheng, J. Yang, B. Yang, J. Yang, D. Hui, Y. Luo, Research progress on individual effect of graphene oxide in cement-based materials and its synergistic effect with other nanomaterials, Nanotechnol Rev. 10 (1) 1208–35.
DOI: 10.1515/ntrev-2021-0080
Google Scholar
[2]
K.P. Bautista-Gutierrez, A.L. Herrera-May, J.M. Santamaría-López, A. Honorato-Moreno, S.A. Zamora-Castro, Recent progress in nanomaterials for modern concrete infrastructure: Advantages and challenges, Materials (Basel). 12 (21) 3548.
DOI: 10.3390/ma12213548
Google Scholar
[3]
R. Snellings, G. Mertens, J. Elsen, Supplementary cementitious materials, Rev Mineral geochemistry. 74 (1) 211–78.
Google Scholar
[4]
A.P. Fantilli, D. Jóźwiak-Niedźwiedzka, Supplementary cementitious materials in concrete, part I,Vol. 14, Materials. MDPI, 2021. p.2291.
DOI: 10.3390/ma14092291
Google Scholar
[5]
C. Herath, C. Gunasekara, D.W. Law, S. Setunge, Performance of high volume fly ash concrete incorporating additives: A systematic literature review, Constr Build Mater. 258 (2020) 120606.
DOI: 10.1016/j.conbuildmat.2020.120606
Google Scholar
[6]
M. Soutsos, A. Hatzitheodorou, J. Kwasny, F. Kanavaris, Effect of in situ temperature on the early age strength development of concretes with supplementary cementitious materials, Constr Build Mater. 103 (2016) 105–16.
DOI: 10.1016/j.conbuildmat.2015.11.034
Google Scholar
[7]
B. Szostak, G.L. Golewski, Effect of nano admixture of CSH on selected strength parameters of concrete including fly ash,In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018. p.12105.
DOI: 10.1088/1757-899x/416/1/012105
Google Scholar
[8]
Y. Mohammadi, S.P. Singh, S.K. Kaushik, Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state, Constr Build Mater. 22 (5) 956–65.
DOI: 10.1016/j.conbuildmat.2006.12.004
Google Scholar
[9]
E.T. Dawood, M. Ramli, High strength characteristics of cement mortar reinforced with hybrid fibres, Constr Build Mater. 25 (5) 2240–7.
DOI: 10.1016/j.conbuildmat.2010.11.008
Google Scholar
[10]
M.S. Konsta-Gdoutos, Z.S. Metaxa, S.P. Shah, Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites, Cem Concr Compos. 32 (2) 110–5.
DOI: 10.1016/j.cemconcomp.2009.10.007
Google Scholar
[11]
M. Du, H. Jing, Y. Gao, H. Su, H. Fang, Carbon nanomaterials enhanced cement-based composites: advances and challenges, Nanotechnol Rev. 9 (1) 115–35.
DOI: 10.1515/ntrev-2020-0011
Google Scholar
[12]
C.S.R. Indukuri, R. Nerella, S.R.C. Madduru, Workability, microstructure, strength properties and durability properties of graphene oxide reinforced cement paste, Aust J Civ Eng. 18 (1) 73–81.
DOI: 10.1080/14488353.2020.1721952
Google Scholar
[13]
F. Sanchez, K. Sobolev, Nanotechnology in concrete–a review, Constr Build Mater. 24 (11) 2060–71.
Google Scholar
[14]
C.S.R. Indukuri, R. Nerella, Enhanced transport properties of graphene oxide based cement composite material, J Build Eng. 37 (2021) 102174.
DOI: 10.1016/j.jobe.2021.102174
Google Scholar
[15]
Z. Pan, L. He, L. Qiu, A.H. Korayem, G. Li, J.W. Zhu, F. Collins, D. Li, W.H. Duan, M.C. Wang, Mechanical properties and microstructure of a graphene oxide–cement composite, Cem Concr Compos. 58 140–7.
DOI: 10.1016/j.cemconcomp.2015.02.001
Google Scholar
[16]
C. Lu, Z. Lu, Z. Li, C.K.Y. Leung, Effect of graphene oxide on the mechanical behavior of strain hardening cementitious composites, Constr Build Mater. 120 457–64.
DOI: 10.1016/j.conbuildmat.2016.05.122
Google Scholar
[17]
S.F. Senin, N. Usrina, A. Desmi, S. Bahri, N. Phoenna, Effect of Combined Carbon Nano Tubes and Graphene Oxide on the High-Volume Fly Ash Mortar Properties,In: Journal of Physics: Conference Series. IOP Publishing, 2024. p.12006.
DOI: 10.1088/1742-6596/2916/1/012006
Google Scholar
[18]
K. Chintalapudi, R.M.R. Pannem, Enhanced chemical resistance to sulphuric acid attack by reinforcing Graphene Oxide in Ordinary and Portland Pozzolana cement mortars, Case Stud Constr Mater. 17 e01452.
DOI: 10.1016/j.cscm.2022.e01452
Google Scholar
[19]
D. Udumulla, T. Ginigaddara, T. Jayasinghe, P. Mendis, S. Baduge, Effect of Graphene Oxide Nanomaterials on the Durability of Concrete: A Review on Mechanisms, Provisions, Challenges, and Future Prospects, Materials (Basel). 17 (10) 2411.
DOI: 10.3390/ma17102411
Google Scholar
[20]
L. Wang, S. Zhang, D. Zheng, H. Yang, H. Cui, W. Tang, D. Li, Effect of graphene oxide (GO) on the morphology and microstructure of cement hydration products, Nanomaterials. 7 (12) 429.
DOI: 10.3390/nano7120429
Google Scholar
[21]
Z. Jastaneyah, H.M. Kamar, A. Alansari, H. Al Garalleh, A comparative analysis of standard and nano-structured glass for enhancing heat transfer and reducing energy consumption using metal and oxide nanoparticles: A review, Sustainability. 15 (12) 9221.
DOI: 10.3390/su15129221
Google Scholar
[22]
H. Zeng, Y. Lai, S. Qu, F. Yu, Effect of graphene oxide on permeability of cement materials: An experimental and theoretical perspective, J Build Eng. 41 102326.
DOI: 10.1016/j.jobe.2021.102326
Google Scholar
[23]
S.C. Devi, R.A. Khan, Effect of graphene oxide on mechanical and durability performance of concrete, J Build Eng. 27 101007.
Google Scholar