Study of the Compressive Strength of Geopolymer Concrete Using Rice Husk Ash and Seashells in Rigid Pavements

Article Preview

Abstract:

Rigid pavement is a type of pavement that uses cement as the main binding material and has a high level of stiffness. The prolonged use of cement has increasingly negative impacts on the environment. Using geopolymer as a substitute for cement can be an eco-friendly alternative solution. Geopolymer is an environmentally friendly material that can be developed as an alternative to cement concrete in the future. The purpose of this study is to determine the compressive strength of geopolymer concrete using rice husk ash and shell as fine aggregates in rigid pavement. The research method used is experimental. The method used for mix design calculation is AASHTO 1993, by making 8 test specimens. Each test specimen uses 4 aggregate and binder ratios, which are 75:25, 70:30, 65:35, and 75:25, each with 2 alkaline activator ratios, which are 3:1 and 5:2. The compressive strength testing of the specimens was conducted at 28 days. The concrete quality used, K225, is equivalent to 18.68 MPa. The compressive strength testing of geopolymer concrete achieved optimum compressive strength at a variation of 65:35 aggregate, 3:1 alkaline, 5% rice husk ash, and 5% shell, which was 18.9667 MPa. At the variation of 75:25 aggregate, 3:1 alkaline, 5% shell, the highest value was 21.4013 MPa. Based on the type of concrete according to its compressive strength, geopolymer concrete with fly ash, rice husk ash, and shell is classified as normal concrete because its compressive strength exceeds 15 MPa and can be a substitute for cement with relatively low strength.

You might also be interested in these eBooks

Info:

Pages:

33-40

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Veranita, Chaira, and J. Salihin, "Pengaruh Pemberian Filler Abu Cangkang Lokan Terhadap Parameter Marshall Pada Campuran Aspal Beton," J. Tek. sipil, vol. 1, no. 1, p.72–81, 2018.

DOI: 10.24815/jts.v9i1.14337

Google Scholar

[2] M. Ulya, Zainudin, and T. B. Santoso, "Seminar Nasional Teknik Sipil STUDI EXPERIMENTAL KUAT TEKAN BETON GEOPOLIMER BERBASIS FLY Seminar Nasional Teknik Sipil karbondioksida yang dihasilkan dari produksi semen .," Semin. Nas. Tek. Sipil, vol. 1, no. 1, p.234–243, 2023.

DOI: 10.56071/sintesi.v2i1.1110

Google Scholar

[3] B. Oktaviastuti, G. D. Pandulu, and E. Lusyana, "Kuat Tekan Beton Geopolymer Berbahan Dasar Abu Terbang (Fly Ash) Sebagai Alternatif Perkerasan Kaku di Daerah Pesisir," Reka Buana J. Ilm. Tek. Sipil dan Tek. Kim., vol. 6, no. 1, p.78–87, 2021.

DOI: 10.33366/rekabuana.v6i1.2271

Google Scholar

[4] P. Jiang, D. Zhao, C. Jin, S. Ye, C. Luan, and R. F. Tufail, "Compressive strength prediction and low-carbon optimization of fly ash geopolymer concrete based on big data and ensemble learning," PLoS One, vol. 19, no. 9 September, 2024.

DOI: 10.1371/journal.pone.0310422

Google Scholar

[5] H. U. Ahmed et al., "Compressive strength of sustainable geopolymer concrete composites: A state-of-the-art review," Sustain., vol. 13, no. 24, 2021.

DOI: 10.3390/su132413502

Google Scholar

[6] D. I. Dinata, A. Rahmawati, and M. D. Setiawan, "Evaluasi Tebal Perkerasan Lentur Dengan Metode Analisa Komponen Dari Bina Marga 1987 Dan Metode Aashto 1993 Menggunakan Program Kenpave (Studi Kasus: Jalan Karangmojo-Semin Sta 0+000 sampai Sta 4+050) ," Semesta Tek., vol. 20, no. 1, p.8–19, 2017, [Online]. Available: http://nptel.ac.in/courses

DOI: 10.33559/err.v1i2.1127

Google Scholar

[7] American Society for Testing and Materials, "ASTM C31/C31M -19 Making and Curing Concrete Test Specimens in the Field," ASTM Int., p.1–6, 2019.

Google Scholar

[8] Badan Standardisasi Nasional, "Cara uji kuat tekan beton dengan benda uji silinder," Badan Standarisasi Nasional, Jakarta, 1974, [Online]. Available: https://www.academia.edu/download/57886647/SNI-1974-2011-.pdf

DOI: 10.31227/osf.io/6598q

Google Scholar

[9] R. Manuahe, M. D. J. Sumajouw, and R. S. Windah, "Kuat Tekan Beton Geopolymer Berbahan Dasar Abu Terbang (Fly Ash)," J. Sipil Statik, vol. 2, no. 6, p.277–282, 2014.

DOI: 10.33366/rekabuana.v6i1.2271

Google Scholar

[10] B. Oktaviastuti, A. Leliana, and P. D. Rahma, "Beton Geopolimer Sebagai Alternatif Perkerasan Kaku (Rigid Pavement) Ramah Lingkungan," J. Unitri, vol. 2, no. 1999, p.24, 2019.

Google Scholar

[11] J. Witkowska-Dobrev, O. Szlachetka, M. Dohojda, and K. Wiśniewski, "Effect of acetic acid on compressive strength and geometric texture of the surface of c20/25 class concrete," Sustain., vol. 13, no. 9, 2021.

DOI: 10.3390/su13095136

Google Scholar

[12] E. Widyananto, N. Alami, and Y. Setyani, "Analisa Kuat Tekan Mortar Geopolimer Berbahan Abu Sekam Padi Dan Kapur Padam," 6th Univ. Res. Colluquium, p.183–188, 2017.

DOI: 10.21831/inersia.v17i1.35901

Google Scholar

[13] M. S. Firdaus and A. Andaryati, "Pengaruh Penggunaan Cangkang Kerang Simping (Moluska Bivalvia Pectinidae) Sebagai Substitusi Sebagian Agregat Halus Beton Normal," Axial J. Rekayasa Dan Manaj. Konstr., vol. 7, no. 3, p.197, 2019.

DOI: 10.30742/axial.v7i3.776

Google Scholar