[1]
U.S.T.M. Association, US scrap tire management summary, US Tire Manufacturers Association: Washington, DC, USA. (2018).
Google Scholar
[2]
A. Mohajerani, L. Burnett, J. V. Smith, S. Markovski, G. Rodwell, M.T. Rahman, H. Kurmus, M. Mirzababaei, A. Arulrajah, S. Horpibulsuk, F. Maghool, Recycling waste rubber tyres in construction materials and associated environmental considerations: A review, Resources, Conservation and Recycling. 155 (2020) 104679. https://doi.org/10.1016/j.resconrec. 2020.104679.
DOI: 10.1016/j.resconrec.2020.104679
Google Scholar
[3]
ETRMA, "European Tyre and Rubber Industry Statistics 2021." 2021. Accessed: Apr. 19, 2022. [Online]. Available: https://www.etrma.org/wp-content/uploads/2021/12/20211215-Statistics-booklet-2021VF.pdf., (n.d.).
Google Scholar
[4]
B. Milanez, T. Bührs, Extended producer responsibility in Brazil: the case of tyre waste, Journal of Cleaner Production. 17 (2009) 608–615.
DOI: 10.1016/j.jclepro.2008.10.004
Google Scholar
[5]
F. Pelisser, N. Zavarise, T.A. Longo, A.M. Bernardin, Concrete made with recycled tire rubber: Effect of alkaline activation and silica fume addition, Journal of Cleaner Production. 19 (2011) 757–763.
DOI: 10.1016/j.jclepro.2010.11.014
Google Scholar
[6]
R. Siddique, T.R. Naik, Properties of concrete containing scrap-tire rubber – an overview, Waste Management. 24 (2004) 563–569.
DOI: 10.1016/j.wasman.2004.01.006
Google Scholar
[7]
S. Raffoul, R. Garcia, K. Pilakoutas, M. Guadagnini, N.F. Medina, Optimisation of rubberised concrete with high rubber content: An experimental investigation, Construction and Building Materials. 124 (2016) 391–404.
DOI: 10.1016/j.conbuildmat.2016.07.054
Google Scholar
[8]
H.F. Isleem, T. Qiong, M.M. Alsaadawi, M.K. Elshaarawy, D.M. Mansour, F. Abdullah, A. Mandor, N.H. Sor, A. Jahami, Numerical and machine learning modeling of GFRP confined concrete-steel hollow elliptical columns, Scientific Reports. 14 (2024) 18647.
DOI: 10.1038/s41598-024-68360-4
Google Scholar
[9]
N. Hamed, M.S. El-Feky, M. Kohail, E.-S.A.R. Nasr, Effect of nano-clay de-agglomeration on mechanical properties of concrete, Construction and Building Materials. 205 (2019) 245–256.
DOI: 10.1016/j.conbuildmat.2019.02.018
Google Scholar
[10]
M. Abdel Wahab, I. Abdel Latif, M. Kohail, A. Almasry, The use of Wollastonite to enhance the mechanical properties of mortar mixes, Construction and Building Materials. 152 (2017) 304–309.
DOI: 10.1016/j.conbuildmat.2017.07.005
Google Scholar
[11]
N. Hani, O. Nawawy, K.S. Ragab, M. Kohail, The effect of different water/binder ratio and nano-silica dosage on the fresh and hardened properties of self-compacting concrete, Construction and Building Materials. 165 (2018) 504–513. https://doi.org/10.1016/ j.conbuildmat.2018.01.045.
DOI: 10.1016/j.conbuildmat.2018.01.045
Google Scholar
[12]
M.K. Elshaarawy, M.M. Alsaadawi, A.K. Hamed, Machine learning and interactive GUI for concrete compressive strength prediction, Scientific Reports. 14 (2024) 16694.
DOI: 10.1038/s41598-024-66957-3
Google Scholar
[13]
D. Li, Y. Zhuge, R. Gravina, J.E. Mills, Compressive stress strain behavior of crumb rubber concrete (CRC) and application in reinforced CRC slab, Construction and Building Materials. 166 (2018) 745–759.
DOI: 10.1016/j.conbuildmat.2018.01.142
Google Scholar
[14]
A. Toumi, T.-H. Nguyen, A. Turatsinze, Debonding of a thin rubberised and fibre-reinforced cement-based repairs: Analytical and experimental study, Materials & Design. 49 (2013) 90–95.
DOI: 10.1016/j.matdes.2013.01.036
Google Scholar
[15]
K.B. Najim, M.R. Hall, A review of the fresh/hardened properties and applications for plain- (PRC) and self-compacting rubberised concrete (SCRC), Construction and Building Materials. 24 (2010) 2043–2051.
DOI: 10.1016/j.conbuildmat.2010.04.056
Google Scholar
[16]
G. Montella, A. Calabrese, G. Serino, Mechanical characterization of a Tire Derived Material: Experiments, hyperelastic modeling and numerical validation, Construction and Building Materials. 66 (2014) 336–347.
DOI: 10.1016/j.conbuildmat.2014.05.078
Google Scholar
[17]
B.S. Mohammed, K.M. Anwar Hossain, J.T. Eng Swee, G. Wong, M. Abdullahi, Properties of crumb rubber hollow concrete block, Journal of Cleaner Production. 23 (2012) 57–67.
DOI: 10.1016/j.jclepro.2011.10.035
Google Scholar
[18]
B.S. Mohammed, Structural behavior and m–k value of composite slab utilizing concrete containing crumb rubber, Construction and Building Materials. 24 (2010) 1214–1221.
DOI: 10.1016/j.conbuildmat.2009.12.018
Google Scholar
[19]
Z. Cheng, Z. Shi, Vibration attenuation properties of periodic rubber concrete panels, Construction and Building Materials. 50 (2014) 257–265. https://doi.org/10.1016/ j.conbuildmat.2013.09.060.
DOI: 10.1016/j.conbuildmat.2013.09.060
Google Scholar
[20]
D.V. Bompa, A.Y. Elghazouli, Creep properties of recycled tyre rubber concrete, Construction and Building Materials. 209 (2019) 126–134. https://doi.org/10.1016/j.conbuildmat. 2019.03.127.
DOI: 10.1016/j.conbuildmat.2019.03.127
Google Scholar
[21]
M.M. Al-Tayeb, B.H. Abu Bakar, H. Ismail, H.M. Akil, Effect of partial replacement of sand by recycled fine crumb rubber on the performance of hybrid rubberized-normal concrete under impact load: experiment and simulation, Journal of Cleaner Production. 59 (2013) 284–289.
DOI: 10.1016/j.jclepro.2013.04.026
Google Scholar
[22]
B.H. AbdelAleem, A.A.A. Hassan, Development of self-consolidating rubberized concrete incorporating silica fume, Construction and Building Materials. 161 (2018) 389–397.
DOI: 10.1016/j.conbuildmat.2017.11.146
Google Scholar
[23]
M.M. Reda Taha, A.S. El-Dieb, M.A. Abd El-Wahab, M.E. Abdel-Hameed, Mechanical, Fracture, and Microstructural Investigations of Rubber Concrete, Journal of Materials in Civil Engineering. 20 (2008) 640–649.
DOI: 10.1061/(ASCE)0899-1561(2008)20:10(640)
Google Scholar
[24]
A. Moustafa, M.A. ElGawady, Mechanical properties of high strength concrete with scrap tire rubber, Construction and Building Materials. 93 (2015) 249–256.
DOI: 10.1016/j.conbuildmat.2015.05.115
Google Scholar
[25]
T. Gupta, S. Chaudhary, R.K. Sharma, Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate, Construction and Building Materials. 73 (2014) 562–574.
DOI: 10.1016/j.conbuildmat.2014.09.102
Google Scholar
[26]
K. Bisht, P.V. Ramana, Evaluation of mechanical and durability properties of crumb rubber concrete, Construction and Building Materials. 155 (2017) 811–817.
DOI: 10.1016/j.conbuildmat.2017.08.131
Google Scholar
[27]
M.A. Aiello, F. Leuzzi, Waste tyre rubberized concrete: Properties at fresh and hardened state, Waste Management. 30 (2010) 1696–1704.
DOI: 10.1016/j.wasman.2010.02.005
Google Scholar
[28]
J. Xue, M. Shinozuka, Rubberized concrete: A green structural material with enhanced energy-dissipation capability, Construction and Building Materials. 42 (2013) 196–204.
DOI: 10.1016/j.conbuildmat.2013.01.005
Google Scholar
[29]
T. Gupta, S. Chaudhary, R.K. Sharma, Mechanical and durability properties of waste rubber fiber concrete with and without silica fume, Journal of Cleaner Production. 112 (2016) 702–711.
DOI: 10.1016/j.jclepro.2015.07.081
Google Scholar
[30]
L.-J. Li, G.-R. Tu, C. Lan, F. Liu, Mechanical characterization of waste-rubber-modified recycled-aggregate concrete, Journal of Cleaner Production. 124 (2016) 325–338.
DOI: 10.1016/j.jclepro.2016.03.003
Google Scholar
[31]
A.T. Noaman, B.H. Abu Bakar, H.M. Akil, Experimental investigation on compression toughness of rubberized steel fibre concrete, Construction and Building Materials. 115 (2016) 163–170.
DOI: 10.1016/j.conbuildmat.2016.04.022
Google Scholar
[32]
A.F. Angelin, E.J.P. Miranda, J.M.C. Dos Santos, R.C.C. Lintz, L.A. Gachet-Barbosa, Rubberized mortar: The influence of aggregate granulometry in mechanical resistances and acoustic behavior, Construction and Building Materials. 200 (2019) 248–254.
DOI: 10.1016/j.conbuildmat.2018.12.123
Google Scholar
[33]
A.O. Atahan, A.Ö. Yücel, Crumb rubber in concrete: Static and dynamic evaluation, Construction and Building Materials. 36 (2012) 617–622. https://doi.org/10.1016/ j.conbuildmat.2012.04.068.
DOI: 10.1016/j.conbuildmat.2012.04.068
Google Scholar
[34]
J. Lv, T. Zhou, Q. Du, H. Wu, Effects of rubber particles on mechanical properties of lightweight aggregate concrete, Construction and Building Materials. 91 (2015) 145–149.
DOI: 10.1016/j.conbuildmat.2015.05.038
Google Scholar
[35]
M. Elchalakani, High strength rubberized concrete containing silica fume for the construction of sustainable road side barriers, Structures. 1 (2015) 20–38.
DOI: 10.1016/j.istruc.2014.06.001
Google Scholar
[36]
E. Güneyisi, M. Gesoğlu, T. Özturan, Properties of rubberized concretes containing silica fume, Cement and Concrete Research. 34 (2004) 2309–2317.
DOI: 10.1016/j.cemconres.2004.04.005
Google Scholar
[37]
N. Holmes, A. Browne, C. Montague, Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement, Construction and Building Materials. 73 (2014) 195–204.
DOI: 10.1016/j.conbuildmat.2014.09.107
Google Scholar
[38]
K. Strukar, T. Kalman Šipoš, I. Miličević, R. Bušić, Potential use of rubber as aggregate in structural reinforced concrete element – A review, Engineering Structures. 188 (2019) 452–468.
DOI: 10.1016/j.engstruct.2019.03.031
Google Scholar
[39]
C.A. Issa, G. Salem, Utilization of recycled crumb rubber as fine aggregates in concrete mix design, Construction and Building Materials. 42 (2013) 48–52.
DOI: 10.1016/j.conbuildmat.2012.12.054
Google Scholar
[40]
A.M. Rashad, A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials, International Journal of Sustainable Built Environment. 5 (2016) 46–82.
DOI: 10.1016/j.ijsbe.2015.11.003
Google Scholar
[41]
M.M.R. Taha, M. Asce, M.A.A. El-wahab, Mechanical, Fracture, and Microstructural Investigations. 20 (2009) 640–649. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077515636&partnerID=40&md5=8b2988d6566a3f8b20e17b8d9a66da95.
Google Scholar
[42]
V. Corinaldesi, A. Mazzoli, G. Moriconi, Mechanical behaviour and thermal conductivity of mortars containing waste rubber particles, Materials & Design. 32 (2011) 1646–1650.
DOI: 10.1016/j.matdes.2010.10.013
Google Scholar
[43]
A. Turatsinze, J.-L. Granju, S. Bonnet, Positive synergy between steel-fibres and rubber aggregates: Effect on the resistance of cement-based mortars to shrinkage cracking, Cement and Concrete Research. 36 (2006) 1692–1697.
DOI: 10.1016/j.cemconres.2006.02.019
Google Scholar
[44]
K. Jafari, V. Toufigh, Experimental and analytical evaluation of rubberized polymer concrete, Construction and Building Materials. 155 (2017) 495–510. https://doi.org/10.1016/ j.conbuildmat.2017.08.097.
DOI: 10.1016/j.conbuildmat.2017.08.097
Google Scholar
[45]
M.K. Ismail, A.A.A. Hassan, An experimental study on flexural behaviour of large-scale concrete beams incorporating crumb rubber and steel fibres, Engineering Structures. 145 (2017) 97–108.
DOI: 10.1016/j.engstruct.2017.05.018
Google Scholar
[46]
M.K. Ismail, A.A.A. Hassan, Performance of Full-Scale Self-Consolidating Rubberized Concrete Beams in Flexure, ACI Materials Journal. (2016).
DOI: 10.14359/51688640
Google Scholar
[47]
A.T. Noaman, B.H. Abu Bakar, H.M. Akil, A.H. Alani, Fracture characteristics of plain and steel fibre reinforced rubberized concrete, Construction and Building Materials. 152 (2017) 414–423.
DOI: 10.1016/j.conbuildmat.2017.06.127
Google Scholar
[48]
F. Aslani, J. Kelin, Assessment and development of high-performance fibre-reinforced lightweight self-compacting concrete including recycled crumb rubber aggregates exposed to elevated temperatures, Journal of Cleaner Production. 200 (2018) 1009–1025.
DOI: 10.1016/j.jclepro.2018.07.323
Google Scholar
[49]
C. Fu, H. Ye, K. Wang, K. Zhu, C. He, Evolution of mechanical properties of steel fiber-reinforced rubberized concrete (FR-RC), Composites Part B: Engineering. 160 (2019) 158–166.
DOI: 10.1016/j.compositesb.2018.10.045
Google Scholar
[50]
H. Zhong, E.W. Poon, K. Chen, M. Zhang, Engineering properties of crumb rubber alkali-activated mortar reinforced with recycled steel fibres, Journal of Cleaner Production. 238 (2019) 117950.
DOI: 10.1016/j.jclepro.2019.117950
Google Scholar
[51]
S. Mehdipour, I.M. Nikbin, S. Dezhampanah, R. Mohebbi, H. Moghadam, S. Charkhtab, A. Moradi, Mechanical properties, durability and environmental evaluation of rubberized concrete incorporating steel fiber and metakaolin at elevated temperatures, Journal of Cleaner Production. 254 (2020) 120126.
DOI: 10.1016/j.jclepro.2020.120126
Google Scholar
[52]
S.R. Abid, M.L. Abdul-Hussein, N.S. Ayoob, S.H. Ali, A.L. Kadhum, Repeated drop-weight impact tests on self-compacting concrete reinforced with micro-steel fiber, Heliyon. 6 (2020) e03198.
DOI: 10.1016/j.heliyon.2020.e03198
Google Scholar
[53]
M.K. Ismail, A.A.A. Hassan, Impact Resistance and Mechanical Properties of Self-Consolidating Rubberized Concrete Reinforced with Steel Fibers, Journal of Materials in Civil Engineering. 29 (2017).
DOI: 10.1061/(ASCE)MT.1943-5533.0001731
Google Scholar
[54]
K.N. Hylands, V. Shulman, Civil engineering applications of tyres, Viridis Shanghai, China, 2003.
Google Scholar
[55]
ETRMA, "ELT-Management-Figures-2017-vf," 2019. Accessed: Apr. 19, 2022. [Online]. Available: https://www.etrma.org/wp-content/uploads/2019/11/ELT-Management-Figures-2017-vf.xlsx.pdf., (n.d.).
Google Scholar
[56]
E. E. Elayouty, S. R. Ragheb, A. M. Youssef, M. E.-S. El-Bany, I. S. Agwa, Enhancing the performance of rigid pavement slabs using sugarcane bagasse ash and macro synthetic fibers, Innovative Infrastructure Solutions. 10 (2025).
DOI: 10.1007/s41062-025-01871-9
Google Scholar
[57]
Abdel Hafez, R. D., Abd-Al Ftah, R. O., Abdelsalam, B. A., & Agwa, I. S. (2025). Behavior of eco-friendly concrete reinforced with hybrid recycled fibers. Sustainable Structures, 5(1), 000064.
DOI: 10.54113/j.sust.2025.000064
Google Scholar
[58]
Abdelsalam, B. A., Agwa, I. S., & Abd-Elaty, A. (2023). Mechanical properties of sustainable ultra-high-strength concrete incorporating recycled gravel and steel fibers. Case Studies in Construction Materials, 19, e01903
DOI: 10.1016/j.cscm.2023.e01903
Google Scholar
[59]
ASTM C150/C150M - 18, Standard Specifications for Portland Cement, (2018).
DOI: 10.1520/C0150_C0150M-18
Google Scholar
[60]
ASTM C191-19, Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, (2019). www.astm.org,.
Google Scholar
[61]
ASTM C187-16, Standard Test Method for Amount of Water Required for Normal Consistency of Hydraulic Cement Paste, (2016).
DOI: 10.1520/c0187
Google Scholar
[62]
ASTM C184-94e1, Standard Test Method for Fineness of Hydraulic Cement by the 150-µm (No. 100) and 75-µm (No. 200) Sieves (Withdrawn 2002), (n.d.).
DOI: 10.1520/c0184
Google Scholar
[63]
ASTM C188-17, Standard Test Method for Density of Hydraulic Cement, (2017).
Google Scholar
[64]
M.M. Alsaadawi, M. Amin, A.M. Tahwia, Thermal, mechanical and microstructural properties of sustainable concrete incorporating Phase change materials, Construction and Building Materials. 356 (2022) 129300.
DOI: 10.1016/j.conbuildmat.2022.129300
Google Scholar
[65]
ASTM C494/C494M − 15, Standard Specification for Chemical Admixtures for Concrete, (2015).
DOI: 10.1520/C0494_C0494M-15
Google Scholar
[66]
ASTM C143/C143M − 15, Standard Test Method for Slump of Hydraulic Cement Concrete, (2015).
Google Scholar
[67]
B.S 1881: Part 116, Method for Determination of Compressive Strength of Concrete Cubes, British Standards Institution. (1983).
Google Scholar
[68]
ASTM C496/C496M − 11, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, (2011).
DOI: 10.1520/C0496_C0496M-11
Google Scholar
[69]
ASTM C78/C78M − 15a, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading),(2015).
DOI: 10.1520/C0078_C0078M-15A
Google Scholar
[70]
A. Zia, Z. Pu, I. Holly, T. Umar, M.A.U.R. Tariq, M. Sufian, A Comprehensive Review of Incorporating Steel Fibers of Waste Tires in Cement Composites and Its Applications, Materials. 15 (2022) 7420.
DOI: 10.3390/ma15217420
Google Scholar
[71]
P. Zhang, C. Wang, C. Wu, Y. Guo, Y. Li, J. Guo, A review on the properties of concrete reinforced with recycled steel fiber from waste tires, REVIEWS ON ADVANCED MATERIALS SCIENCE. 61 (2022) 276–291.
DOI: 10.1515/rams-2022-0029
Google Scholar
[72]
A.E. Elrefaei, M. Alsaadawi, M.M. Elshafiey, M. Abdolwahab, A.F. Oan, Performance Evaluation of Ultra High Performance Concrete Manufactured with Recycled Steel Fiber, in: 2024: p.3–13.
DOI: 10.4028/p-dWhX1H
Google Scholar
[73]
A.E.M.M. Elrefaei, M.M. Alsaadawi, W. Wagdy, Characteristics of High-Strength Concrete Reinforced with Steel Fibers Recovered from Waste Tires, Key Engineering Materials. 945 (2023) 145–156.
DOI: 10.4028/p-d5v1nm
Google Scholar
[74]
J. Eidan, I. Rasoolan, A. Rezaeian, D. Poorveis, Residual mechanical properties of polypropylene fiber-reinforced concrete after heating, Construction and Building Materials. 198 (2019) 195–206.
DOI: 10.1016/j.conbuildmat.2018.11.209
Google Scholar
[75]
Ö. Sallı Bideci, The effect of high temperature on lightweight concretes produced with colemanite coated pumice aggregates, Construction and Building Materials. 113 (2016) 631–640.
DOI: 10.1016/j.conbuildmat.2016.03.113
Google Scholar