Effect of Nano Calcium Hydroxide Coating in Fire Protection in Buildings

Article Preview

Abstract:

Fire hazards in buildings pose a critical challenge, necessitating effective fire protection measures. This study evaluates the potential of nano-calcium hydroxide (NCH) as an additive in fire-resistant paints. Laboratory experiments were conducted following the ASTM E119 standard, testing paint formulations with 1% and 3% NCH. Thermal resistance, protective performance, and economic feasibility were analyzed. Results indicate that NCH-modified paints significantly enhance fire resistance compared to conventional coatings, offering a promising solution for improved fire protection in construction.

You might also be interested in these eBooks

Info:

Pages:

23-41

Citation:

Online since:

August 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Rabajczyk, A.; Zielecka, M.; Popielarczyk, T.; Sowa, T. Nanotechnology in Fire Protection— Application and Requirements. Materials 2021, 14, 7849

DOI: 10.3390/ma14247849

Google Scholar

[2] Harmathy, T., Sultan, M., and MacLaurin, J. (1987). "Comparison of Severity of Exposure in ASTM E 119 and ISO 834 Fire Resistance Tests." ASTM International. J. Test. Eval. November 1987; 15(6): 371–375

DOI: 10.1520/JTE11036J

Google Scholar

[3] ICC NTA, ASTM E119 and Fire Resistance Standards, Available online: https://www.icc-nta.org/astm-e119-and-fire-resistance-standards/

DOI: 10.1520/e2032-21

Google Scholar

[4] Maluk, C., Bisby, L., and Torero, J. (2017). "The Performance of Intumescent Coatings in Fire Protection Applications." Fire Safety Journal, 91, 104-115.

Google Scholar

[5] White, R., and Dietenberger, M. (2010). "Fire Performance of Wood Products and Coatings." Forest Products Laboratory Report.

Google Scholar

[6] Kumar, P., Sharma, R., and Singh, R. (2020). "Advances in Nano-Enhanced Fire Retardant Coatings." Journal of Materials Science, 55(14), 5892-5908.

Google Scholar

[7] Giorgi, R., Baglioni, M., Berti, D., and Baglioni, P. (2005). "New Nanomaterials for the Conservation of Artworks." Accounts of Chemical Research, 33(8), 798-805.

Google Scholar

[8] The ICC NTA, ASTM E119 and Fire Resistance Standards, Available online: https://www.icc-nta.org/astm-e119-and-fire-resistance-standards/

DOI: 10.1520/e2032-21

Google Scholar

[9] Safeopia, Fire Protection. 2018. Available online: https://www.safeopedia.com/definition/ 193/ fire-protection (accessed on 18 april 2024).

Google Scholar

[10] Rabajczyk, A.; Zielecka, M;. Popielarczyk, T.; Sowa, T. Nanotechnology in Fire Protection-Application and Requirements . Materials 2021, 14, 7849. https//:doi.org/

DOI: 10.3390/ma14247849

Google Scholar

[11] Costes, L., Laoutid, F., Brohez, S., Dubois, P., 2017. Bio-based flame retardants: When nature meets fire protection. Mater. Sci. Eng.: R: Reports 117, pages no from 1–25

DOI: 10.1016/j.mser.2017.04.001

Google Scholar

[12] Malucelli, G., Carosio, F., Alongi, J., Fina, A., Frache, A., Camino, G., 2014. Materials engineering for surface-confined flame retardancy. Mater. Sci. Eng. R: Reports 84 (2014), pages no from 1–20.

DOI: 10.1016/j.mser.2014.08.001

Google Scholar

[13] Dimes, F.G., & Ashurst, J. (1998). Conservation of Building and Decorative Stone (1st ed.). Routledge, pages no from 303–338

DOI: 10.4324/9780080502908

Google Scholar

[14] Hansen, Eric & Rodriguez-Navarro, Carlos & Van Balen, Koenraad. (2008). Lime putties and mortars: Insights into fundamental properties. Studies in Conservation. page no from 53. 9-23

DOI: 10.1179/sic.2008.53.1.9

Google Scholar

[15] C, Rodriguez-Navarro, E, Ruiz-Agudo, M, Ortega-Huertas, E, Hansen, Nanostructure and Irreversible Colloidal Behavior of Ca(OH)2: Implications in Cultural Heritage Conservation , page no from 9-23. https://pubs.acs.org/doi/.

DOI: 10.1021/la051338f

Google Scholar

[16] López-Arce, P., Gomez-Villalba, L.S., Martínez-Ramírez, S., de Buergo, M.Á. and Fort, R., 2011. Influence of relative humidity on the carbonation of calcium hydroxide nanoparticles and the formation of calcium carbonate polymorphs. Powder technology, 205(1), pp.263-269.

DOI: 10.1016/j.powtec.2010.09.026

Google Scholar

[17] Rodriguez-Navarro, C., Ruiz-Agudo, E., Ortega-Huertas, M. and Hansen, E., 2005. Nanostructure and irreversible colloidal behavior of Ca (OH) 2: implications in cultural heritage conservation. Langmuir, 21(24), page no from.10948-10957.

DOI: 10.1021/la051338f

Google Scholar

[18] Jinmeng Zhu, Xuanhua Li, Yuanyuan Zhang, Jia Wang, Yijian Cao, Mara Camaiti, and Bingqing We, Dual Functionalities of Few-Layered Boron Nitrides in the Design and Implementation of Ca(OH)2 Nanomaterials toward an Efficient Wall Painting Fireproofing and Consolidation, page no from 5- 22

DOI: 10.1021/acsami.9b00826

Google Scholar

[19] Victoria E. García-Vera, Antonio José Tenza-Abril, Afonso Miguel Solak, Marcos Lanzón, Calcium hydroxide nanoparticles coatings applied on cultural heritage materials: Their influence on physical characteristics of earthen plasters, page no from 4 - 7.

DOI: 10.1016/j.apsusc.2019.144195

Google Scholar

[20] Harmathy, T., Sultan, M., and MacLaurin, J. (November 1, 1987). "Comparison of Severity of Exposure in ASTM E 119 and ISO 834 Fire Resistance Tests." ASTM International. J. Test. Eval. November 1987; 15(6): 371–375.page no from 4- 8

DOI: 10.1520/JTE11036J

Google Scholar

[21] GLC Paints, http://glcpaints.com/ (accessed on 12 February 2024).

Google Scholar

[22] "Homogenizers for laboratory or industrial homogenization" (accessed on 24 February 2024).

Google Scholar