[1]
H.-J. Donnerberg: Atomic Simulations of Electro-Optical and Magneto-Optical Materials (Springer Tracts in Modern Physics, Vol. 151, Berlin, 1999).
Google Scholar
[2]
L. Shiv, J.L. Sorensen, E.S. Polzik, and G. Mizel: Opt. Lett. Vol. 20 (1995), p.2270.
Google Scholar
[3]
E.A. Kotomin, and A.I. Popov: Nucl. Instr. Methods B Vol. 141 (1998) p.1.
Google Scholar
[4]
E.R. Hodgson, C. Zaldo, and F. Agullo-Lopez: Solid State Commun. Vol. 75 (1990) p.351.
Google Scholar
[5]
L. Grigorjeva, D. Millers, E.A. Kotomin, and E.S. Polzik: Solid State Commun. Vol. 104 (1997), p.327.
DOI: 10.1016/s0038-1098(97)00309-8
Google Scholar
[6]
Y. Qiu, K.B. Ucer, R.T. Williams, L. Grigorjeva, D. Millers, and V. Pankratov: Nucl. Instr. Methods B Vol. 191 (2002) p.98.
Google Scholar
[7]
E. Possenriede, O.F. Schirmer, and H.-J. Donnerberg: J. Phys.: Cond. Matt. Vol. 1 (1989) p.7267.
Google Scholar
[8]
T. Varnhorst, O.F. Schirmer, H. Krosse, R. Scharfschwerdt, and T.W. Kool: Phys. Rev. B Vol. 53 (1996) p.116.
Google Scholar
[9]
Y. Chen, and M.M. Abraham: J. Phys. Chem. Sol. Vol. 51 (1990) p.747.
Google Scholar
[10]
L. Landau: Phys. Z. Sowjetunion Vol. 3 (1933) p.664.
Google Scholar
[11]
K.S. Song, and R.T. Williams: Self-Trapped Excitons (Berlin: Springer-Verlag, 1993).
Google Scholar
[12]
] S.V. Nistor, E. Goovaerts, D. Schoemaker: Phys. Rev. B Vol. 48 (1993) p.9575.
Google Scholar
[13]
B. Faust, H. Müller, and O.F. Schirmer: Ferroelectrics Vol. 153 (1994) p.297.
Google Scholar
[14]
R.T. Williams, K.B. Ucer, G. Xiong, H.M. Yochum, L. Grigorjeva, D. Millers, and G. Corradi: Radiat. Eff. and Deff. in Sol. Vol. 155 (2001) p.265.
Google Scholar
[15]
L. Grigorjeva, D. Millers, V. Pankratov, R.T. Williams, R.I. Eglitis, E.A. Kotomin, and G. Borstel, Solid State Comm. Vol. 129 (2004) p.691.
DOI: 10.1016/j.ssc.2003.12.031
Google Scholar
[16]
P. Günter, and J.-P. Huignard (eds.) Photorefractive Materials and Their Applications, Topics in Applied Physics (Springer, Berlin, 1988).
Google Scholar
[17]
O. Hanske-Petitpierre, Y. Yacoby, J. Mustre de Leon, E.A. Stern, J.J. Rehr, Phys. Rev. B Vol. 44 (1991) p.6700.
Google Scholar
[18]
R. Niemann, H. Hartmann, B. Schneider, H. Hesse, M. Neumann: J. Phys.: Cond. Matter Vol. 8 (1996) p.5837.
Google Scholar
[19]
M.E. Lines, and A.M. Glass: Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).
Google Scholar
[20]
A. Gordon, and S. Dorfman: Phys. Rev. B Vol. 51 (1995) p.9306.
Google Scholar
[21]
J.A. Pople, and D.L. Beveridge: Approximate Molecular Orbital Theory (McGraw-Hill, New York, 1970).
Google Scholar
[22]
E. Stefanovich, E. Shidlovskaya, A.L. Shluger, and M. Zakharov: Phys. Stat. Sol. B Vol. 160 (1990) p.529.
DOI: 10.1002/pssb.2221600214
Google Scholar
[23]
A.L. Shluger, and E. Stefanovich: Phys. Rev. B Vol. 42 (1990) p.9664.
Google Scholar
[24]
R.I. Eglitis, A.V. Postnikov, and G. Borstel: Phys. Rev. B Vol. 54 (1996) p.2421.
Google Scholar
[25]
R.I. Eglitis, A.V. Postnikov, and G. Borstel: Phys. Rev. B Vol. 55 (1997) p.12976.
Google Scholar
[26]
R.I. Eglitis, N.E. Christensen, E.A. Kotomin, A.V. Postnikov, and G. Borstel: Phys. Rev. B Vol. 56 (1997) p.8599.
Google Scholar
[27]
E.A. Kotomin, R.I. Eglitis, A.V. Postnikov, G. Borstel, and N.E. Christensen: Phys. Rev. B Vol. 60 (1999) p.1.
Google Scholar
[28]
C.R.A. Catlow, and W.C. Mackrodt (eds.): Computer Simulations of Solids, Lecture Notes in Physics (Springer Verlag, Berlin, 1982).
Google Scholar
[29]
G. Borstel, R. Eglitis, E. Kotomin and E. Heifets, Phys. Stat. Sol. B, Vol. 236 (2003) p.253.
DOI: 10.1002/pssb.200301664
Google Scholar
[30]
E.A. Kotomin, M.M. Kuklja, R.I. Eglitis, and A.I. Popov: Mater. Sci. and Eng. B Vol. 37 (1996) p.212.
Google Scholar
[31]
E.A. Kotomin, R.I. Eglitis, and G. Borstel, J. Phys. Cond. Matt. Vol. 12 (2000) p. L557.
Google Scholar
[32]
R. Eglitis, E. Kotomin, G. Borstel, S. Kapphan, V. Vikhnin, Comp. Mater. Sci. 27 (2003) p.81
Google Scholar
[33]
R.Eglitis, E. Kotomin, G. Borstel, J. Phys.: Cond. Matt. Vol. 14 (2002) p.3735.
Google Scholar
[34]
O.F. Schirmer, Ferroelectrics, 2004, in press.
Google Scholar
[35]
S. Köhne, O.F. Schirmer, H. Hesse, T.W. Kool, and V. Vikhnin: J. of Supercond. Vol. 12 (1999) p.193.
Google Scholar
[36]
H.-J. Reyher, private communication, 2001.
Google Scholar
[37]
M. Gao, S. Kapphan, R. Pankrath, J. Zhao: Phys. Stat. Sol. B Vol. 217 (2000) p.999.
Google Scholar
[38]
P.W.M Jacobs, E.A. Kotomin, and R.I. Eglitis: J. of Physics: Cond. Matt. Vol. 12 (2000) p.569
Google Scholar
[39]
D.M. Smyth: Ferroelectrics Vol. 133 (1992) p.13.
Google Scholar
[40]
A.W. Hewat: J. Phys. C Vol. 6 (1973) p.2559.
Google Scholar
[41]
R.I. Eglitis, E.A. Kotomin, and G. Borstel: Solid State Comm. Vol. 108 (1998) p.333.
Google Scholar
[42]
R.I. Eglitis, E.A. Kotomin, and G. Borstel: J. Phys.: Cond. Matter Vol. 12 (2000) p. L431.
Google Scholar
[43]
A.V. Postnikov, T. Neumann, and G. Borstel: Ferroelectrics Vol. 164 (1995) p.101.
Google Scholar
[44]
R.I. Eglitis, D. Fuks, S. Dorfman, E.A. Kotomin, and G. Borstel, Mater. Sci in Semicond. Proc. Vol. 5 (2003) p.153.
Google Scholar
[45]
G.A. Samara: Ferroelectrics Vol. 117 (1987) p.347.
Google Scholar
[46]
S. Dorfman, D. Fuks, A. Gordon, A.V. Postnikov, and G. Borstel: Phys. Rev. B Vol. 52 (1995) p.7135.
Google Scholar
[47]
H. Abe, K. Harada, R.J. Matsuo, H. Uwe, and K. Ohshima: J. Phys.: Cond. Matter Vol. 13 (2001) p.3257.
Google Scholar