In Situ TEM Investigation of Diffusion of Nano-Scale Liquid Pb Inclusions on Dislocations and in Bulk Aluminum

Article Preview

Abstract:

Diffusion of nano-sized liquid Pb inclusions in thin aluminum foils is investigated using in-situ transmission electron microscopy (TEM). Free diffusion of the inclusions in the bulk and diffusion constrained by dislocations trapping is studied. The motion of trapped Pb inclusions is spatially confined in close proximity to the dislocations. The diffusion coefficients of free motion of the inclusions are determined using Einstein's equation. The diffusion coefficients of trapped inclusions were obtained using an equation based on Smoluchowski's analysis of the Brownian motion of particle in a harmonic potential. The agreement of the diffusion coefficients of free and trapped inclusions indicates the same underlying microscopic mechanism, and no strong influence from dislocations. The microscopic mechanism controlling the mobility is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

1072-1080

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Gabrisch, L. Kjeldgaard, E. Johnson, U. Dahmen: Acta Mater. Vol. 49 (2001) p.4259.

Google Scholar

[2] H. Gabrisch, U. Dahmen, E. Johnson: Microsc. Microanal. Vol. 4 (1998) p.286.

Google Scholar

[3] S. Prokofjev, V. Zhilin, E. Johnson, M.T. Levinsen, J.S. Andersen, U. Dahmen, T. Radetic, J.H. Turner: Proc. VIII Seminar on Diffusion and Thermodynamics of Materials, eds. J. Čermák J. and J. Vřešt'ál (Brno, Czech Republic 2002) p.241.

Google Scholar

[4] S.I. Prokofjev, V.M. Zhilin, E. Johnson, M. Levinsen, U. Dahmen: Proc. 5th Int. Conf. Single Crystal Growth and Heat & Mass Transfer, Vol. 2, ed. V.P. Ginkin (Obninsk, Russia 2003) p.487.

Google Scholar

[5] F.A. Nichols: J. Nucl. Mater. Vol. 30 (1969) p.143.

Google Scholar

[6] L.E. Wilertz, P.G. Shewmon: Metall. Trans. Vol. 1 (1970), p.2217.

Google Scholar

[7] G.A. Cottrell: Fusion Eng. Design, Vol. 66-68 (2003), p.253.

Google Scholar

[8] M. Smoluchowski: Bull. Int. de l'Acad. de Cracovie, Serie A (1913) p.418.

Google Scholar

[9] E. Johnson, J.S. Andersen, M.T. Levinsen, S. Steenstrup, S. Prokofjev, V. Zhilin, U. Dahmen, T. Radetic, J.H. Turner: Mater. Sci. Eng. A: Vol. 375-377 (2004), p.951.

DOI: 10.1016/j.msea.2003.10.076

Google Scholar

[10] A. Einstein: Ann. d. Phys. Vol. 17 (1905) p.549.

Google Scholar

[11] C.J. Smithells, E.A. Brandes (eds. ) Metal Reference Book (Butterworths, Boston 1976).

Google Scholar

[12] M. Smoluchowski: Sitzungsber. Kais. Akad. Wissensch. Wien (IIa), B. 123 (1914) s. 2381.

Google Scholar

[13] A.A. Chernov: Modern Crystallography Vol. 3. Ed. B.K. Vainshtein (Springer, Berlin 1984).

Google Scholar

[14] N.A. Gjostein: Surfaces and Interfaces, Vol. 1. Eds. J.J. Burke, N.L. Reed and V. Weiss (Syracuse University Press 1967). p.271.

Google Scholar