Kinetic Constraints in Diffusion

Article Preview

Abstract:

In the presence of strong external fields and steep gradients the flux formulae are not linear. The relation between the flux and the diffusion coefficient must be modified. The different flux-limited theories are presented. The flux formulae for solid systems far from equilibrium are derived and different forms of phenomenological flux limiters are discussed. It is shown that in order to accurately compute diffusion flow that is generated by strong force fields and/or discontinuities, the flux-limited diffusion must be considered. The flux limiters improve the spatial accuracy and allow to avoid baseless oscillations in the solutions.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

151-156

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. D. Levermore, J. Quant. Spect. Rad. Transfer. 31, 149 (1984).

Google Scholar

[2] G. M. Kremer and I. Müller, J. Math. Phys. 33, 2265 (1992).

Google Scholar

[3] A. M. Anile, S. Pennisi and M. Sammartino, J. Math. Phys. 32, 544 (1991).

Google Scholar

[4] M. Zakari and D. Jou, J. Non-Equilib. Thermodyn. 20, 342 (1995).

Google Scholar

[5] E. M. Epperlein, G. J. Rickard and A. R. Bell, Phys. Rev. Lett. 61, 2453 (1988).

Google Scholar

[6] G. J. Rickard, A. R. Bell and E. M. Epperlein, Phys. Rev. Lett. 62, 2687 (1989).

Google Scholar

[7] A. M. Anile and S. Pennisi, Phys. Rev. B 46, 13186 (1992).

Google Scholar

[8] M. Waldman and E. A. Mason, Chem. Phys. 58, 121 (1981).

Google Scholar

[9] F. J. Uribe and E. A. Mason, Chem. Phys. 133, 335 (1989).

Google Scholar

[10] S. A. Hope, G. Féat and P. T. Landsberg, J. Phys. A 14, 2377 (1981).

Google Scholar

[11] J. González and D. Jou, Phys. Lett. A 168, 375 (1992).

Google Scholar

[12] M. Zakari, Physica A 240, 676 (1997).

Google Scholar

[13] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).

Google Scholar

[14] A. L. Greer, Appl. Surface Sci. 86, 329 (1995).

Google Scholar

[15] D. Jou, J. Casas-Vázquez and G. Lebon, Rep. Prog. Phys. 51, 1105 (1988).

Google Scholar

[16] P. Rosenau, Phys. Rev. A 46, R7371 (1992).

Google Scholar

[17] G. L. Olson, L. H. Auer and M. L. Hall, Los Alamos LA-UR-99-471.

Google Scholar

[18] . E. Morel, J. Quantitative Spectr. & Radiative Transfer, 65, 769 (2000).

Google Scholar

[19] G. A. Moses and J. Yuan, Univ. of Wisconsin UWFDM-1213 (2003).

Google Scholar

[20] M. Zakari, J-E. Llebot and D. Jou, Phys. Lett. A 173, 421 (1993).

Google Scholar

[21] M. Zakari and D. Jou, Physica A 253, 205 (1998).

Google Scholar

[22] E. Scalas, R. Gorenflo, F. Mainardi and M. Raberto, J. of Quantitative Finance [Preprint in http: /xxx. lanl. gov/abs/cond-mat/0210166, v2 11 Oct 2002].

Google Scholar

[23] T. Hillen and H. G. Othmer, SIAM J. Appl. Math, 61, 751 (2000).

Google Scholar

[24] R. Ghez, Diffusion Phenomena, Kluwer Academic/Plenum Publishers (New York 2001).

Google Scholar