Kirkendall Effect: Dramatic History of Discovery and Developments

Article Preview

Abstract:

The importance and generality of Kirkendall discovery, which opened new area in diffusion science, have been discussed. The developments of Kirkendall’s idea for sub-surface (SS) and grain boundary (GB) interdiffusion have been considered and applied for the advanced structural materials, such as thin films and nano-composites. The kinetics and mechanisms of SS and GB Kirkendall effects have been analyzed theoretically and studied experimentally.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-80

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.D. Smigelskas and E.O. Kirkendall: Trans. AIME Vol. 171 (1947), p.130.

Google Scholar

[2] B. Ya. Pines and A.F. Sirenko: J. Techn. Phys. Vol. 28 (1958), p.1748.

Google Scholar

[3] Ya.E. Geguzin, Yu.I. Boiko and L.N. Paritskaya: DAN SSSR Vol. 173 (1967), p.323.

Google Scholar

[4] Ya.E. Geguzin: Diffusion Zone (in Russian, Nauka, Moscow, 1979).

Google Scholar

[5] Ya.E. Geguzin, N. Ch. Bao and L.N. Paritskaya: Phys. Met. Metallogr. Vol. 27 (1969), p.450.

Google Scholar

[6] Ya.E. Geguzin, N. Ch. Bao and L.N. Paritskaya: DAN SSSR Vol. 190 (1970), p.569.

Google Scholar

[7] I.V. Zakurdaev and E. Ya Chernyak: Phys. Met. Mettalogr. Vol. 43 (1977), p.574.

Google Scholar

[8] Ya.E. Geguzin and L.N. Paritskaya: Phys. Met. Metallogr. Vol. 40 (1975), p.85.

Google Scholar

[9] L.N. Paritskaya and Ya.E. Geguzin: Phys. Met. Metallogr. Vol. 41 (1976), p.656.

Google Scholar

[10] L.N. Paritskaya: Powder Metal. Vol. 6 (1984), p.28.

Google Scholar

[11] J. Schlipf: Acta Met. Vol. 21 (1973), p.435.

Google Scholar

[12] G.B. Stephenson: Acta Metal. Vol. 36 (1988), p.2663.

Google Scholar

[13] R.S. Barnes: Proc. Phys. Soc. Vol. 65B (1952), p.512.

Google Scholar

[14] J.W. Mattews and J.H. Crawford: Phil. Mag. Vol. 11 (1965), p.977.

Google Scholar

[15] H. Nakajima: JOM (1997), p.15.

Google Scholar

[16] E. Kirkendall, L. Thomassen and C. Uptegrove: Trans. AIME Vol. 133 (1939), p.186.

Google Scholar

[17] E.O. Kirkendall: Trans. AIME Vol. 147 (1942), p.104.

Google Scholar

[18] L. Darken: Trans. AIME Vol. 175 (1948), p.184.

Google Scholar

[19] J.C. Fisher: J. Appl. Phys. Vol. 22 (1951), p.74.

Google Scholar

[20] R.T. Whipple: Phil. Mag. Vol. 45 (1954), p.1225.

Google Scholar

[21] V.Y. Doo and R.W. Balluffi: Acta Metal. Vol. 6 (1958), p.428.

Google Scholar

[22] V. Ruth: Z. Phys. Chem. Vol. 20 (1959), p.313.

Google Scholar

[23] Yu.S. Kaganovskii and L.N. Paritskaya: Interface Sci. Vol. 6 (1998), p.165.

Google Scholar

[24] L.G. Harrison: Trans. Farad. Soc. Vol. 57 (1961), p.1191.

Google Scholar

[25] W. Gust, S. Mayer, A. Bögel and B. Predel: J. Physique Vol. 46 (1985), p. C4.

Google Scholar

[26] Yu.S. Kaganovskii and L.N. Paritskaya: Metallofiz. Vol . 4 (1982), p.103.

Google Scholar

[27] L. Kaur, W. Gust and L. Kozma: Handbook of Grain and Interface Boundary Diffusion Data (Zeigler, Stuttgart, 1989).

Google Scholar

[28] M.J.H. van Dal, A.M. Gusak, C. Cserhati, A.A. Kodentsov and F.J.J. van Loo: Phys. Rev. Letters Vol. 86 (2001).

Google Scholar