Effective Diffusion Coefficients during Osmotic Dehydration of Vegetables with Different Initial Porosity

Article Preview

Abstract:

Chesnut and pumpkin fruits were dehydrated with osmotic solutions of sucrose and NaCl at 25°C. These food materials have different structure, composition and porosity. Water loss and solids gain kinetics were experimentally determined and modeled using a diffusional model. In spite of the several mass transfer mechanisms taking place along with diffusion during osmotic dehydration, the modeling was satisfactory and involved effective coefficients of diffusion useful to quantify the different mass transfer fluxes. Water and sucrose transfer rates during osmotic dehydration with sucrose solutions are independent on the initial food material characteristics; however they seem to be related with the permeability of these components to a sucrose layer formed in the surface of the samples. In the case of osmotic dehydration with sodium chloride solutions, the coefficients of diffusion show a dependence on food material characteristic and higher values of these coefficients for pumpkin (more porous material) were found.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 258-260)

Pages:

575-585

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Giangiacomo, D. Torreggiani and E. Abbo: J. Food Process. Preserv. Vol. 11 (1987), p.183.

Google Scholar

[2] P.P. Lewicki and A. Lenart: In Handbook of Industrial drying, Vol. I (2nd Ed. ) (p.691). (Marcel Dekker Inc., New York, 1995).

Google Scholar

[3] B. Gerelt, Y. Ikeuchi, and A. Suzuki: Meat Sci. Vol. 56 (2000), p.311.

Google Scholar

[4] O. Corzo and N. Bracho: J. Food Eng. Vol. 66 (2005), p.51.

Google Scholar

[5] J. Hawkes and J.M. Flink: J. Food Process. Preserv. Vol. 2 (1978), p.265.

Google Scholar

[6] M.H. Kim and R.T. Toledo: J. Food Sci. Vol. 52 (1987), p.980.

Google Scholar

[7] I.G. Mandala, E.F. Anagnostaras and C.K. Oikonomou: J. Food Eng. Vol. 69 (2005), p.307.

Google Scholar

[8] G.M. Dixon, and J.J. Jen: J. Food Sci. Vol. 42 (1977), p.1126.

Google Scholar

[9] F. Prothon, L.M. Ahrné, T. Funebo, S. Kidman, M. Langton and I. Sjöholm: Lebens. Wissens. Technol. Vol. 34 (2001), p.95.

DOI: 10.1006/fstl.2000.0745

Google Scholar

[10] H.R. Bolin, C.C. Huxsoll and R. Jackson: J. Food Sci. Vol. 48 (1983), p.202.

Google Scholar

[11] A.L. Raoult-Wack: Trends Food Sci. Technol. Vol. 5 (1994), p.255.

Google Scholar

[12] A. Chiralt, N. Martínez-Navarrete, J. Martínez-Monzó, P. Talens, G. Moraga, A. Ayala and P. Fito: J. Food Eng. Vol. 49 (2001), p.129.

DOI: 10.1016/s0260-8774(00)00203-x

Google Scholar

[13] N.B. Tregunno and H.D. Goff: Food Res. Int. Vol. 29 (1996), p.471.

Google Scholar

[14] W.E.L. Spiess and D. Behsnilian: Proceedings IDS '98, Vol. A (1998), p.47. Haldiki, Greece.

Google Scholar

[15] J. Shi and M. Le Maguer: Food Rev. Int. Vol. 18 (2002), p.305.

Google Scholar

[16] A. Argaiz, A. Lopez-Malo, E. Palou and J. Welti: Drying Technol. Vol. 12 (1994), p.1709.

Google Scholar

[17] A.S. Bawa and H.S. Gujral: J. Sci. Ind. Res. Vol. 59 (2000), p.63.

Google Scholar

[18] A.M. Sereno, R. Moreira and E. Martinez, E: J. Food Eng. Vol. 47 (2001), p.43.

Google Scholar

[19] H.N. Lazarides, E. Katsanidis and A. Nickolaidis: J. Food Eng. Vol. 25 (1995), p.151.

Google Scholar

[20] I. Escriche, R. Garcia-Pinchi, J.M. Carot and J.A. Serra: Int. J. Food Sci. Technol. Vol. 37 (2002), p.87.

Google Scholar

[21] G. Giraldo, P. Talens, P. Fito and A. Chiralt: J. Food Eng. Vol. 58 (2003), p.33.

Google Scholar

[22] N.E. Mavroudis, V. Gekas and I. Sjöholm: J. Food Eng. Vol. 35 (1998), p.191.

Google Scholar

[23] D.C. Yang and M. Le Maguer: J. Food Qual. Vol. 15 (1992), p.387.

Google Scholar

[24] M.W. Hoover and N.C. Miller: J. Food Sci. Vol. 40 (1975), p.698.

Google Scholar

[25] A.C.C. Rodrigues, R.L. Cunha and M.D. Hubinger: J. Food Eng. Vol. 59 (2003), p.129.

Google Scholar

[26] H.N. Lazarides, V. Gekas and N. Mavroudis: J. Food Eng. Vol. 31 (1997), p.315.

Google Scholar

[27] B.I.O. Ade-Omowaye, N.K. Rastogi, A. Angersbach and D. Knorr: J. Food Sci. Vol. 67 (2002), p.1790.

DOI: 10.1111/j.1365-2621.2002.tb08724.x

Google Scholar

[28] J. Crank: The mathematics of diffusion (2nd ed. ) (Oxford University Press, New York 1975).

Google Scholar

[29] R.W. Robinson and D.S. Decker-Walters: Cucurbits (CAB International: Oxon, UK, 1997).

Google Scholar

[30] FAOSTAT data (2006). FAO Statistical Databases. Available online in: http: /faostat. fao. org. Last accessed June (2006).

Google Scholar

[31] J. De la Montaña, M. Migues and J.M. García: Food Chem. Vol. 84 (2004), p.401.

Google Scholar

[32] AOAC. Official Methods of Analysis. (Association of Official Analytical Chemists, Washington, 1995).

Google Scholar

[33] D. Saputra: Drying Technol. Vol. 19 (2001), p.415.

Google Scholar

[34] M.B. Uddin, P. Ainsworth and S. Ibanoglu: J. Food Eng. Vol. 65 (2004), p.473.

Google Scholar

[35] F. Chenlo, R. Moreira, C. Fernández-Herrero and G. Vázquez: J. Food Eng. Vol. 73 (2006), p.164.

Google Scholar

[36] L. Mayor, R. Moreira, F. Chenlo and A.M. Sereno: J. Food Eng., Vol. 74 (2006), p.253.

Google Scholar

[37] N.K. Rastogi, K.S.M.S. Raghavarao, K. Niranjan and D. Knorr: Trends Food Sci. Technol. Vol. 13 (2002), p.48.

Google Scholar

[38] N.K. Rastogi and K.S.M.S. Raghavarao: J. Food Eng. Vol. 34 (1997), p.429.

Google Scholar

[39] R. Mendoza and M.E. Schmalko: Int. J. Food Proper. Vol. 5 (2002), p.537.

Google Scholar

[40] D. Salvatori, A. Andrés, A. Chiralt and P. Fito: J. Food Eng. Vol. 42 (1999), p.125.

Google Scholar

[41] H.G. Schwartzberg and R.Y. Chao: Food Technol., Vol. Feb (1982), p.73.

Google Scholar

[42] N.P. Zogzas, Z.B. Maroulis and D. Marinos-Kouris: Drying Technol., Vol. 14 (1996), p.2225.

DOI: 10.1080/07373939608917205

Google Scholar