Oxygen and Silicon Self-Diffusion in Quartz and Silica: The Contribution of First Principles Calculations

Article Preview

Abstract:

Despite its importance as a material in many domains, SiO2 is still a very badly known material from the point of view of materials science. Experimentally the silicon and oxygen diffusion has been determined in silica as well as in quartz, but several discrepancies arise between different authors. From a theoretical point of view the various possible atomic defects have mostly been studied in an electronic perspective, so even the simplest ones remained quite poorly known till recently, the silicon related ones remaining completely unknown. The great similarity between silica and quartz properties is in favour of a common model. The determination of the precise formation and migration energies of the various defects is then of paramount importance for the understanding of the kinetic properties of SiO2. We will present in this paper the results of a study of the formation and mobility properties of oxygen and silicon defects in the view of determining the self-diffusion mechanism(s). Our work relies on up to date ab-initio methods: total energy calculations in a DFT-LDA approach, using either plane wave or pseudo-atomic basis for the wave functions and pseudopotentials.We shall discuss the role of the various parameters controlling the kinetic behaviour: chemical potential of the species, nature of the main impurities, cristallinity, and preparation mode of the sample.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 258-260)

Pages:

542-553

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. Lamkin, F. L. Riley, and R. J. Fordham. J. Europ. Cer. Soc., 10: 347-367, (1992).

Google Scholar

[2] J. C. Mikkelsen. Appl. Phys. Lett., 45: 1187, (1984).

Google Scholar

[3] G. Brebec, R. Seguin, C. Sella, J. Bevenot, and J. C. Martin. Acta Metall., 28: 327-333, (1980).

DOI: 10.1016/0001-6160(80)90168-6

Google Scholar

[4] O. Jaoul, F. B´ejina, F. ´Elie, and F. Abel. Phys. Rev. Lett., 74: 2038, (1995).

Google Scholar

[5] R. Tromp, G. D. Rubloff, P. Balk, F. K. LeGoues, and E. J. van Loenen. Phys. Rev. Lett., 55: 2332-2335, (1985).

Google Scholar

[6] D. Tsoukalas, C. Tsamis, and J. Stoemenos. Appl. Phys. Lett., 63: 3167-3169, (1993).

Google Scholar

[7] D. Tsoukalas, C. Tsamis, and P. Normand. J. Appl. Phys., 89: 7809-7813, (2001).

Google Scholar

[8] D. Mathiot, J. P. Schunck, M. Perego, M. Fanciulli, P. Normand, C. Tsamis, and D. Tsoukalas. J. Appl. Phys., 94: 2136-2138, (2003).

DOI: 10.1063/1.1589168

Google Scholar

[9] T. Takahashi, S. Fukatsu, K. M. Itoh, M. Uematsu, A. Fujiwara, H. Kageshima, and Y. Takahashi. J. Appl. Phys., 93: 3674-3676, (2003).

DOI: 10.1063/1.1554487

Google Scholar

[10] M. Uematsu, H. Kageshima, Y. Takahashi, S. Fukatsu, K. M. Itoh, K. Shiraishi, and U. G¨osele. Appl. Phys. Lett., 84: 876, (2004).

Google Scholar

[11] Guido Roma, Yves Limoge, and Stefano Baroni. Phys. Rev. Lett., 86: 4564, (2001).

Google Scholar

[12] S. Baroni, A. Dal Corso, S. de Gironcoli, and P. Giannozzi, (2001).

Google Scholar

[13] P. Ordej´on, E. Artacho, and J. M. Soler. Phys. Rev. B, 53: 10441, (1996).

Google Scholar

[14] Layla Martin-Samos, Yves Limoge, Jean-Paul Crocombette, Guido Roma, Nicolas Richard, Eduardo Anglada, and Emilio Artacho. Phys. Rev. B, 71: 014116-12, (2005).

DOI: 10.1103/physrevb.71.014116

Google Scholar

[15] L. Martin-Samos, Y. Limoge, N. Richard, J. P. Crocombette, G. Roma, E. Anglada, and E. Artacho. Europhys. Lett., 66: 680-686, (2004).

DOI: 10.1209/epl/i2003-10247-3

Google Scholar

[16] G. Makov and M. C. Payne. Phys. Rev. B, 51: 4014, (1995).

Google Scholar

[17] J. Shim, E. -K. Lee, and R. M. Nieminen. Phys. Rev. B, 71: 35206-12, (2005).

Google Scholar

[18] U. Gerstmann, P. De´ak, R. Rurali, B. Aradi, Th. Frauenheim, and H. Overhof. Physica B, 340- 342: 190-194, (2003).

DOI: 10.1016/j.physb.2003.09.111

Google Scholar

[19] A. Baldereschi, S. Baroni, and R. Resta. Phys. Rev. Lett., 61: 734-737, (1988).

Google Scholar

[20] G. Roma and Y. Limoge. Phys. Rev. B, 70: 174101-6, (2004).

Google Scholar

[21] M. Pesola, J. von Boehm, T. Mattila, and R. M. Nieminen. Phys. Rev. B, 60: 11449-11463, (1999).

DOI: 10.1103/physrevb.60.11449

Google Scholar

[22] C. H. Bennett. Diffusion in Solids: Recent developments, page 73. Academic Press, New York, (1975).

Google Scholar

[23] G. Mills and H. J´onsson. Phys. Rev. Lett., 72: 1124, (1994).

Google Scholar

[24] Layla Martin-Samos. ´Etude ab-initio des auto-d´efauts et des m´ecanismes d'auto-diffusion dans un verre de silice. PhD thesis, Universit´e de Cergy-Pontoise, (2004).

Google Scholar

[25] L. Martin-Samos, G. Roma, Y. Limoge, and N. Richard. Silica and µe. to be published.

Google Scholar

[26] L. Martin-Samos, Y. Limoge, G. Roma, and N. Richard. Silicon diffusion. to be published.

Google Scholar

[27] Young-Gu Jin and K. J. Chang. Phys. Rev. Lett., 86: 1793, (2001).

Google Scholar

[28] J. D. Kalen, R. S. Boyce, and J. D. Cawley. J. Am. Ceram. Soc., 74: 203, (1991).

Google Scholar

[29] M. Tomozawa, H. Li, and K. M. Davis. J. Noncryst. Sol., 179: 162, (1994).

Google Scholar

[30] J. C. Mikkelsen. J. Elec. Mater., 11: 541, (1982).

Google Scholar

[31] G. Roma and Y. Limoge. Def. Diff. Forum, 237-240: 127, (2005).

Google Scholar

[32] G. Roma, Y. Limoge, and L. Martin-Samos. Nucl. Inst. Meth. B, 250: 54-56, (2006).

Google Scholar

[33] S. Fukatsu, T. Takahashi, K. M. Itoh, M. Uematsu, A. Fujiwara, H. Kageshima, Y. Takahashi, K. Shiraishi, and U. G¨osele. Appl. Phys. Lett., 83: 3897, (2003).

DOI: 10.1063/1.1625775

Google Scholar