Process-Induced Diffusion Phenomena in Advanced CMOS Technologies

Article Preview

Abstract:

The continuous scaling of electron devices places strong demands on device design and simulation. The currently prevailing bulk transistors as well as future designs based on thin silicon layers all require a tight control of the dopant distribution. For process simulation, especially the correct prediction of boron diffusion and activation was always a problem. The paper describes the model developed for boron implanted into crystalline silicon and shows applications to hot-shield annealing and flash-assisted rapid thermal processing.

You might also be interested in these eBooks

Info:

[1] International technology roadmap for semiconductors, edition 2005, executive summary, figure 8 (2005).

Google Scholar

[2] M. Horstmann, A. Wei, T. Kammler, J. Hntschel, H. Bierstedt, et al., in Technical Digest of the 2005 International Electron Devices Meeting (IEDM) (IEEE, Piscataway, 2005), pp.233-236.

Google Scholar

[3] S. Inumiya, Y. Akasaka, T. Matsuki, F. Ootsuka, K. Torii, et al., in Technical Digest of the 2005 International Electron Devices Meeting (IEDM) (IEEE, Piscataway, 2005), pp.23-26.

DOI: 10.1109/iedm.2005.1609256

Google Scholar

[4] S. Harrison, P. Coronel, F. Leverd, R. Cerutti, R. Palla, et al., in Technical Digest of the 2003 International Electron Devices Meeting (IEDM) (IEEE, Piscataway, 2003), pp.449-452.

Google Scholar

[5] J. Lolivier, J. Widiez, A. Vinet, T. Poiroux, F. Dauge, et al., in R. P. Mertens and C. L. Claeys, eds., ESSDERC 2004 (IEEE, Piscataway, 2004), pp.77-80.

Google Scholar

[6] D. Hisamoto, W. -C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, et al., IEEE Trans. Electron Devices, vol. 47, (2000), pp.2320-2325.

DOI: 10.1109/16.887014

Google Scholar

[7] Synopsys TCAD, release y-2006. 6, Synopsys, Inc., Mountain View, CA, USA (2006).

Google Scholar

[8] M. G. Ancona and G. J. Iafrate, Phys. Rev. B, vol. 39, (1989), p.95369540.

Google Scholar

[9] A. E. Michel, W. Rausch, P. A. Ronsheim, and R. H. Kastl, Appl. Phys. Lett., vol. 50, (1987), pp.416-418.

Google Scholar

[10] L. Pelaz, M. Jaraiz, G. H. Gilmer, H. -J. Gossmann, C. S. Rafferty, et al., Appl. Phys. Lett., vol. 70, (1997), pp.2285-2287.

DOI: 10.1063/1.118839

Google Scholar

[11] M. -J. Caturla, T. Diaz de la Rubia, J. Zhu, and M. Johnson, in T. Diaz de la Rubia, S. Coffa, P. A. Stolk, and C. S. Rafferty, eds., Defects and Diffusion in Silicon Processing (1997), vol. 469 of Mat. Res. Soc. Symp. Proc., pp.335-340.

DOI: 10.1557/proc-469-335

Google Scholar

[12] C. J. Ortiz, P. Pichler, T. F¨uhner, F. Cristiano, B. Colombeau, et al., J. Appl. Phys., vol. 96, (2004), pp.4866-4877.

Google Scholar

[13] P. Pichler, C. J. Ortiz, B. Colombeau, N. E. B. Cowern, E. Lampin, et al., in Technical Digest of the 2004 International Electron Devices Meeting (IEDM) (IEEE, Piscataway, 2004), pp.967-970.

DOI: 10.1109/iedm.2004.1419347

Google Scholar

[14] A. Armigliato, D. Nobili, P. Ostoja, M. Servidori, and S. Solmi, in H. R. Huff and E. Sirtl, eds., Semiconductor Silicon 1977 (1977), vol. 77-2 of Electrochem. Soc. Proc., pp.638-647.

Google Scholar

[15] P. Pichler, in D. F. Downey, M. E. Law, A. P. Claverie, and M. J. Rendon, eds., Silicon Front-End Junction Formation Technologies (2002), vol. 717 of Mat. Res. Soc. Symp. Proc., pp. C3. 1. 1- C3. 1. 12.

Google Scholar

[16] W. Windl, X. -Y. Liu, and M. P. Masquelier, phys. stat. sol. (b), vol. 226, (2001), pp.37-45.

Google Scholar

[17] W. Windl, M. M. Bunea, R. Stumpf, S. T. Dunham, and M. P. Masquelier, Phys. Rev. Lett., vol. 83, (1999), pp.4345-4348.

DOI: 10.1103/physrevlett.83.4345

Google Scholar

[18] Z. N´enyei, J. Niess, S. Buschbaum, K. Meyer, W. Dietl, et al., in P. Timans, E. Gusev, F. Roozeboom, M. Ozturk, and D. L. Kwong, eds., Rapid Thermal and Other Short-Time Processing Technologies III (2002).

Google Scholar

[19] W. Lerch, S. Paul, J. Niess, S. McCoy, T. Selinger, et al., Materials Science and Engineering B, vol. 124-125, (2005), pp.24-31.

Google Scholar