Phenomenological Aspects of Grain Boundary Diffusion

Article Preview

Abstract:

In this paper, the authors review recent progress that has been made in understanding various aspects of grain boundary diffusion at the phenomenological level. We show how the mapping of phenomenological grain boundary diffusion problems onto a lattice readily permits lattice-based random walk theory to be used to address the problem, invariably by Monte Carlo computer simulation methods. Recent advances in calculating concentration profiles and effective diffusion coefficients are described in detail.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 258-260)

Pages:

483-490

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Kaur, Y. Mishin and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion (Wiley, Chichester 1995).

Google Scholar

[2] Y. Mishin, Defect and Diffusion Forum Vol. 194-199 (2001), p.1113.

Google Scholar

[3] P. Benoist and G. Martin, Thin Solid Films Vol 25 (1975), p.181.

Google Scholar

[4] W.W. Brandt, J. Chem. Phys. Vol. 59 (1973), p.5562.

Google Scholar

[5] G.E. Murch, Diffusion and Defect Data Vol. 32, (1983), p.1.

Google Scholar

[6] I.V. Belova and G.E. Murch, unpublished work.

Google Scholar

[7] T. Fiedler, A. Öchsner, N. Muthubandara, I.V. Belova and G.E. Murch, Materials Science Forum, to be published.

Google Scholar

[8] A.D. Le Claire and A. Rabinovitch, in Diffusion in Crystalline Solids, edited by G.E. Murch and A.S. Nowick (Academic Press, Orlando 1984).

Google Scholar

[9] I.V. Belova and G.E. Murch, Proc. Mat. Res. Soc. Vol. 677 (2001), p. AA7. 7 (electronically published).

Google Scholar

[10] R.P.T. Whipple, Philos. Mag. Vol. 45 (1954), p.1225.

Google Scholar

[11] J. P Lavine and D.L. Losee, J. Appl. Phys. Vol. 59 (1984), p.924.

Google Scholar

[12] J.P. Lavine, in Simulation of Semiconductor Devices and Processes, edited by K. Board and D.R.J. Owen (Pineridge Press 1984).

Google Scholar

[13] G.E. Murch and S.J. Rothman, Diffusion and Defect Data Vol. 42 (1985), p.17.

Google Scholar

[14] L.G. Harrison, Trans. Farad. Soc. Vol. 57 (1961), p.1191.

Google Scholar

[15] E.W. Hart, Acta Metall. Vol. 5 (1957), p.597.

Google Scholar

[16] I.V. Belova and G.E. Murch, Philos. Mag. Vol. 81 (2001), p.2447.

Google Scholar

[17] S.V. Divinski, F. Hisker, Y. -S. Kang, J. -S. Lee and Chr. Herzig., Zeit. Metallk. Vol. 93 (2002), p.256.

Google Scholar

[18] S.V. Divinski and L.N. Larikov, Defect and Diffusion Forum, Vol. 143-147 (1997), p.1469.

DOI: 10.4028/www.scientific.net/ddf.143-147.1469

Google Scholar

[19] J.D. Hodge, J. Am. Ceram. Soc. Vol. 74 (1991), p.823.

Google Scholar

[20] P. Metsch, F.H.M. Spit and H. Bakker, Phys. Stat. Sol. (a) Vol. 93 (1986), p.543.

Google Scholar

[21] Y. Mishin and I.M. Razumovskii, Acta Metall. Mater. Vol. 40 (1992), p.597.

Google Scholar

[22] I.V. Belova and G.E. Murch, Proc. Mat. Res. Soc. Vol. 677 (2001), p. AA7. 20 (electronically published).

Google Scholar

[23] J.C. Fisher, J. Appl. Phys. Vol. 22 (1951), p.74.

Google Scholar

[24] I.V. Belova and G.E. Murch, J. Phys. Chem. Solids Vol 64 (2003), p.873.

Google Scholar

[25] I.V. Belova and G.E. Murch, Mass and Charge Transport in Inorganic Materials (Techna, Faenza 2003), p.225.

Google Scholar

[26] I.V. Belova and G.E. Murch Proc. Mat. Res. Soc. Vol. 731 (2002), p. W5. 4 (electronically published).

Google Scholar

[27] J.R. Kalnin, E.A. Kotomin and J. Maier, J. Phys. Chem. Solids Vol. 63 (2002), p.449.

Google Scholar

[28] I.V. Belova and G.E. Murch, Philos. Mag. Vol. 84 (2004), p.17.

Google Scholar

[29] I.V. Belova and G.E. Murch, Proc. Mat. Res. Soc. Vol. 731 (2002), p. W5. 4. 1 (electronically published).

Google Scholar