Diffusion and Stress in Tungsten; Different Time Scales

Article Preview

Abstract:

The Darken method is used to evaluate and compare different time scales in an ideal crystal lattice. The crystalline tungsten exemplifies presented approach. It is shown that in this metal and at 1273 K the time scales differ by nine orders of magnitude. Particular emphasis is given to the problem of deformation, the temperature and the mass diffusion time scales in tungsten quasicontinuum. The transport process in the nonuniform temperature and stress field is characterized by representative velocities. These velocities allow to quantify the time and length scales and can be used for the proper non-dimensialization and effective solution of the particular transport problems.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 258-260)

Pages:

79-84

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.L. Lebowitz: Rev. of Modern Phys. Vol. 71 (1999), p.347.

Google Scholar

[2] http: /www. webelements. com.

Google Scholar

[3] R.S. Lakes: IMA Mathematics of Multiscale Materials vol. 99 (1998), p.129.

Google Scholar

[4] L.S. Darken: Trans. AIME Vol. 174 (1948), p.184.

Google Scholar

[5] K. Holly and M. Danielewski: Phys. Rev. B Vol. 50 (1994), p.13336.

Google Scholar

[6] W. Nernst: Z. Phys. Chem. Vol. 4 (1889), p.129.

Google Scholar

[7] M. Planck: Ann. Phys. Chem. Vol. 40 (1890), p.561.

Google Scholar

[8] A. Einstein: Annalen der Physik Vol. 17 (1905), p.549.

Google Scholar

[9] J. W. Gibbs, Trans. Conn. Acad., 2 (1873), p.382.

Google Scholar

[10] L. D. Landau and E. M. Lifshits: Fluid Mechanics (Butterworth-Heinemann, Oxford 1987).

Google Scholar

[11] M. Danielewski and W. Wakihara: Defect and Diff. Forum, 237-240 (2005), p.151.

Google Scholar

[12] M. P. Marder: Condensed Matter Physics (John Wiley & Sons, New York 2000).

Google Scholar

[13] P. Deurinck and C. Creemers: Surf. Sci. Vol. 441 (1999), p.493.

Google Scholar

[14] S. Helfensteyn, J. Luyten, L. Feyaerts and C. Creemers: Appl. Surf. Sci. Vol. 212-213 (2003), p.844.

DOI: 10.1016/s0169-4332(03)00088-6

Google Scholar

[15] A. Melzer, M. Klindworth, and A. Piel: Physical Review Letters Vol. 87 (2001).

Google Scholar

[16] A. Suzuki and Y. Mishin: Interface Science Vol. 11 (2003), p.131.

Google Scholar

[17] B. Wierzba, A. śmudzki and M. Pietrzyk: The effect of stresses on kinetics of diffusion, in Proc. Conf. KomPlasTech, (Wydawnictwo Naukowe , Akapit', Ustroń 2005), p.107.

Google Scholar

[18] Gmelin Handbook of Inorganic Chemistry: vol. A3 (1989), p.161.

Google Scholar