Diffusion in Nanostructured Materials

Article Preview

Abstract:

Recent results on diffusion in nanostructured materials are reviewed. The analysis highlights the importance of the proper account for a hierarchic microstructure which is often formed in nanostructured materials. The diffusion kinetics is such a material requires a special consideration in dependence on the temperature, diffusion time and the segregation level of the solute. Pressure-less sintering results in clustering of nanograins with significantly enhanced diffusivity of the inter-agglomerate boundaries. Severe plastic deformation produces a broad spectrum of high-angle grain boundaries (GBs) with different kinetic properties. The majority of the high-angle GBs reveals diffusivities very similar to those of general high-angle GBs in their well-annealed coarse-grained counterparts. Nevertheless, considerably faster short-circuit diffusion paths are detected, too. The origin, geometric arrangement, structural and kinetic properties of these high-diffusivity paths are comprehensively investigated and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 289-292)

Pages:

623-632

Citation:

Online since:

April 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation: