Self Diffusion in Liquid Titanium: Quasielastic Neutron Scattering and Molecular Dynamics Simulation

Abstract:

Article Preview

Self diffusion in liquid titanium was measured at 2000K by quasielastic neutron scattering (QNS) in combination with container less processing via electromagnetic levitation. At small wavenumbers q the quasielastic signal is dominated by incoherent scattering. Up to about 1.2 °A−1 the width of the quasielastic line exhibits a q2 dependence as expected for long range atomic transport, thus allowing to measure the self diffusion coefficient DTi. As a result the value DTi = (5.3± 0.2)× 10−9 m2s−1 was obtained.With a molecular dynamics (MD) computer simulation using an embedded atom model (EAM) for Ti, the self diffusion coefficient is determined from the mean square displacement as well as from the decay of the incoherent intermediate scattering function at different q. By comparing both methods, we show that the hydrodynamic prediction of a q2 dependence indeed extends up to about 1.2 °A−1. Since this result does not depend significantly on the details of the interatomic potential, our findings show that accurate values of self diffusion coefficients in liquid metals can be measured by QNS on an absolute scale.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 289-292)

Edited by:

A. Agüero, J.M. Albella, M.P. Hierro, J. Phillibert and F.J. Pérez Trujillo

Pages:

609-614

DOI:

10.4028/www.scientific.net/DDF.289-292.609

Citation:

A. Meyer et al., "Self Diffusion in Liquid Titanium: Quasielastic Neutron Scattering and Molecular Dynamics Simulation", Defect and Diffusion Forum, Vols. 289-292, pp. 609-614, 2009

Online since:

April 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.