Predicting Diffusion Coefficients from First Principles via Eyring’s Reaction Rate Theory

Article Preview

Abstract:

A simplified approach to predicting diffusion coefficients directly from first-principles is proposed. In this approach, the atomic jump frequencies are calculated through the Eyring’s reaction rate theory while the temperature dependence of diffusion coefficients are accounted using phonon theory within the quasi-harmonic approximation. The procedure can be applied to both self-diffusion and impurity diffusion coefficients and different crystal systems. Applications to self-diffusion coefficients in fcc Cu, bcc Mo, hcp Mg and impurity diffusion coefficients of Li in fcc Al, W in bcc Mo and Cd in hcp Mg show agreement with experimental measurements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-13

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.E. Blochl, E. Smargiassi, R. Car, D.B. Laks, W. Andreoni and S.T. Pantelides: Phys. Rev. Lett. Vol. 70 (1993), p.2435.

DOI: 10.1103/physrevlett.70.2435

Google Scholar

[2] V. Milman, M.C. Payne, V. Heine, R.J. Needs, J.S. Lin and M.H. Lee: Phys. Rev. Lett. Vol. 70 (1993), p.2928.

Google Scholar

[3] N. Sandberg, B. Magyari-Kope and T.R. Mattsson: Phys. Rev. Lett. Vol. 89 (2002), p.065901.

Google Scholar

[4] M. Mantina, Y. Wang, R. Arroyave, C. Wolverton, L.Q. Chen and Z.K. Liu: Phys. Rev. Lett. Vol. 100 (2008), p.215901.

Google Scholar

[5] P.E. Blochl, C.G. Van De Walle and S.T. Pantelides: Phys. Rev. Lett. Vol. 64 (1990), p.1401.

Google Scholar

[6] A. Janotti, M. Kremar, C.L. Fu and R.C. Reed: Phys. Rev. Lett. Vol. 92 (2004), p.085901.

Google Scholar

[7] M. Krcmar, C.L. Fu, A. Janotti and R.C. Reed: Acta Mater. Vol. 53 (2005), p.2369.

Google Scholar

[8] W. Frank, U. Breier, C. Elsasser and M. Fahnle: Phys. Rev. Lett. Vol. 77 (1996), p.518.

Google Scholar

[9] G. Neumann and C. Tuijn: Solid State Phenom Vol. 88 (2002).

Google Scholar

[10] A.D. Le Claire: J. Nucl. Mater. Vol. 69-70 (1978), p.70.

Google Scholar

[11] M. Mantina, Y. Wang, R. Arroyave, L.Q. Chen and Z.K. Liu: (Unpublished).

Google Scholar

[12] H. Eyring: J. Chem. Phys. Vol. 3 (1935), p.107.

Google Scholar

[13] C. Wert and C. Zener: Phys. Rev. Vol. 76 (1949), p.1169.

Google Scholar

[14] G.H. Vineyard: J. Phys. Chem. Solids Vol. 3 (1957), p.121.

Google Scholar

[15] W. Franklin: J. Phys. Chem. Solids Vol. 28 (1967), p.829.

Google Scholar

[16] S.A. Rice: Phys. Rev. Vol. 112 (1958), p.804.

Google Scholar

[17] T.W. Dobson, J.F. Wager and J.A. VanVechten: Phys. Rev. B Vol. 40 (1989), p.2962.

Google Scholar

[18] J.F. Wager: Philos. Mag. A-Phys. Condens. Matter Vol. 63 (1991), p.1315.

Google Scholar

[19] J.A. Van Vechten: Phys. Rev. B Vol. 12 (1975), p.1247.

Google Scholar

[20] S. Glasstone, K.J. Laidler and H. Eyring, in: The theory of rate processes, McGraw-Hill Book Company, Inc., Columbus (1941), p.189.

Google Scholar

[21] N.L. Peterson: J. Nucl. Mater. Vol. 69-70 (1978), p.3.

Google Scholar

[22] S. Baroni, S. de Gironcoli, A. Dal Corso and P. Giannozzi: Rev. Mod. Phys. Vol. 73 (2001), p.515.

DOI: 10.1103/revmodphys.73.515

Google Scholar

[23] A. Van de Walle and G. Ceder: Rev. Mod. Phys. Vol. 74 (2002), p.11.

Google Scholar

[24] M. Krcmar, C.L. Fu, A. Janotti and R.C. Reed: Acta Mat. Vol. 53 (2005), p.2369.

Google Scholar

[25] J.B. Adams: J. Mater. Res Vol. 4 (1989), p.102.

Google Scholar

[26] G. Neumann: Phys. Status Solidi B-Basic Res. Vol. 144 (1987), p.329.

Google Scholar

[27] K. Compaan and Y. Haven: Trans. Faraday Soc. Vol. 52 (1956), p.786.

Google Scholar

[28] J.G. Mullen: Phys. Rev. Vol. 124 (1961), p.1723.

Google Scholar

[29] M. Mantina: Ph.D. thesis (Pennsylvania State University, 2008).

Google Scholar

[30] H.B. Huntington and P.B. Ghate: Phys. Rev. Lett. Vol. 8 (1962), p.421.

Google Scholar

[31] J.R. Manning: Phys. Rev. Vol. 136 (1964), p. A1758.

Google Scholar

[32] G. Kresse and D. Joubert: Phys. Rev. B Vol. 59 (1999), p.1758.

Google Scholar

[33] D.M. Ceperley and B.J. Alder: Phys. Rev. Lett. Vol. 45 (1980), p.566.

Google Scholar

[34] J.P. Perdew, K. Burke and Y. Wang: Phys. Rev. B Vol. 54 (1996), p.16533.

Google Scholar

[35] G. Henkelman and H. Jonsson: J. Chem. Phys. Vol. 113 (2000), p.9978.

Google Scholar

[36] S. Wei and M.Y. Chou: Phys. Rev. Lett. Vol. 69 (1992), p.2799.

Google Scholar

[37] A. Van de Walle, M. Asta and G. Ceder: CALPHAD Vol. 26 (2002), p.539.

Google Scholar

[38] Y. Wang, Z. -K. Liu and L. -Q. Chen: Acta Mater. Vol. 52 (2004), p.2665.

Google Scholar

[39] A.E. Mattsson, P.A. Schultz, M.P. Desjarlais, T.R. Mattsson and K. Leung: Modell. Simul. Mater. Sci. Eng. Vol. 13 (2005), p. R1.

DOI: 10.1088/0965-0393/13/1/r01

Google Scholar

[40] K. Carling, G. Wahnstrom, T.R. Mattsson, A.E. Mattsson, N. Sandberg and G. Grimvall: Phys. Rev. Lett. Vol. 85 (2000), p.3862.

DOI: 10.1103/physrevlett.85.3862

Google Scholar

[41] N. Sandberg and G. Grimvall: Phys. Rev. B. Vol. 63 (2001), p.184109.

Google Scholar

[42] T. Hehenkamp: J. Phys. Chem. Solids Vol. 55 (1994), p.907.

Google Scholar

[43] J. -E. Kluin: Philos. Mag. A Vol. 65 (1992), p.1263.

Google Scholar

[44] T. Hoshino, N. Papanikolaou, R. Zeller, P.H. Dederichs, M. Asato, T. Asada and N. Stefanou: Comput. Mater. Sci. Vol. 14 (1999), p.56.

Google Scholar

[45] R.O. Simmons and R.W. Balluffi: Phys. Rev. Vol. 129 (1963), p.1533.

Google Scholar

[46] S. Mantl and W. Triftshauser: Phys. Rev. B Vol. 17 (1978), p.1645.

Google Scholar

[47] R.W. Balluffi: J. Nucl. Mater. Vol. 69/70 (1978), p.240.

Google Scholar

[48] A.S. Berger, S.T. Ockers and R.W. Siegel: J. Phys. F. Vol. 9 (1979), p.1023.

Google Scholar

[49] C. Janot, D. Mallejac and B. George: Phys. Rev. B Vol. 2 (1970), p.3088.

Google Scholar

[50] C.N. Tome, A.M. Monti and E.J. Savino: Phys. Stat. Sol. B Vol. 92 (1979), p.323.

Google Scholar

[51] C. Mairy, J. Hillairet and D. Schumacher: Acta Metall. Vol. 15 (1967), p.1258.

Google Scholar

[52] P.G. Shewmon: Trans. Metall. Soc. AIME Vol. 206 (1956), p.918.

Google Scholar

[53] A.M. Monti and E.J. Savino: Phys. Rev. B Vol. 23 (1981), p.6494.

Google Scholar

[54] J. Combronde and G. Brebec: Acta Metall. Vol. 19 (1971), p.1393.

Google Scholar

[55] H. Mehrer and A. Seeger: Phys. Stat. Sol. Vol. 35 (1969), p.313.

Google Scholar

[56] S.J. Rothman and N.L. Peterson: Phys. Stat. Sol. Vol. 35 (1969), p.305.

Google Scholar

[57] H.G. Bowden and R.W. Balluffi: Phil. Mag. Vol. 19 (1969), p.1001.

Google Scholar

[58] M. Beyeler and Y. Adda: J. Phys. Vol. 29 (1968), p.345.

Google Scholar

[59] C.P. Flynn and E.F.W. Seymour: Proc. Phys. Soc. Vol. 77 (1961), p.922.

Google Scholar

[60] A. Kuper, H. Letaw, L. Slifkin, E. Sonder and C.T. Tomizuka: Phys. Rev. B Vol. 98 (1955), p.1870.

DOI: 10.1103/physrev.98.1870.2

Google Scholar

[61] K. Maier: Phys. Stat. Sol. (b) Vol. 44 (1977), p.567.

Google Scholar

[62] M. Weithase and F. Noack: Z. Phys. Vol. 270 (1974), p.319.

Google Scholar

[63] D. Bartdorff: Ph.D. thesis (Tech. Universitat Berlin, 1972).

Google Scholar

[64] K. Maier, C. Bassani and W. Schule: Phys. Lett. Vol. 44A (1973), p.539.

Google Scholar

[65] E.V. Borisov, P.L. Gruzin, L.V. Pavlinov and G.B. Fedorov: Metall. Metalloved. Vol. 1 (1959), p.213.

Google Scholar

[66] M.B. Bronfin, S.Z. Bokshtein and A.A. Zhukhovitsky: Zavod. Lab. Vol. 26 (1960), p.828.

Google Scholar

[67] W. Von Danneberg and E. Krautz: Z. Naturoforsch. Vol. 16a (1961), p.854.

Google Scholar

[68] J. Askill and D.H. Tomlin: Phil. Mag. Vol. 8 (1963), p.997.

Google Scholar

[69] K. Maier, H. Mehrer and G. Rein: Z. Metallkd. Vol. 70 (1979), p.271.

Google Scholar

[70] G. Neumann and V. Tolle: Phil. Mag. A Vol. 61 (1990), p.563.

Google Scholar

[71] P.G. Shewmon: J. Metals. Vol. 8 (1956), p.918.

Google Scholar

[72] C. Moreau, A. Allouche and J. Knystautas: J. App. Phys. Vol. 58 (1985), p.4582.

Google Scholar

[73] J. Verlinden and R. Gijbbels: Adv. Mass Spectrom. Vol. 8A (1980), p.485.

Google Scholar

[74] Y. Minamino, T. Yamane and H. Araki: Metall. Mater. Trans. A Vol. 18 (1987), p.1536.

Google Scholar

[75] L.P. Costas: the diffusion of lithium in aluminum (Savannah River Lab., Aiken, SC 1962).

Google Scholar

[76] J. Askill: Phys. Stat. Sol. Vol. 23 (1967), p. K 21.

Google Scholar

[77] E.V. Borisov, P.L. Gruzin and S.V. Zemskii: Zashch. Pokryt. Metal. Vol. 2 (1968), p.104.

Google Scholar

[78] R. Roux: Ph.D. thesis (Univ. Nancy, 1972).

Google Scholar

[79] W. Erley and H. Wagner: Phys. Stat. Sol. a Vol. 25 (1974), p.463.

Google Scholar

[80] J. Combronde and G. Brebec: Acta Metall. Vol. 20 (1972), p.37.

Google Scholar

[81] M. Mantina, Y. Wang, C. Wolverton, L.Q. Chen and Z.K. Liu: Acta Mat Vol. 57 (2009), p.4102.

Google Scholar