[1]
J. O'M. Bockris and P. K. Subramanyan, A thermodynamic analysis of hydrogen in metals in the presence of an applied stress field, Acta Metallurgica, 1971, 19, 1205.
DOI: 10.1016/0001-6160(71)90053-8
Google Scholar
[2]
A. T. Yokobori, T. Nemoto, K. Satoh, and T. Yamada, Numerical analysis on hydrogen diffusion and concentration in solid with emission around the crack tip, Engineering Fracture Mechanics, 1996, 55.
DOI: 10.1016/0013-7944(96)00002-1
Google Scholar
[3]
D. M. Symons, A comparison of internal hydrogen embrittlement and hydrogen environment embrittlement of X-750, Engineering Fracture Mechanics, 2001, 68, 751-71.
DOI: 10.1016/s0013-7944(00)00123-5
Google Scholar
[4]
G. Muller, M. Uhlemann, A. Ulbricht, J. Bohmert, Influence of hydrogen on toughness of irradiated reactor pressure vessel steels, Journal of Nuclear Materials, 2006, 359, 114-21.
DOI: 10.1016/j.jnucmat.2006.08.004
Google Scholar
[5]
A. Toshimitsu Yokobori Jr., Yasrou Chida, Takenao Nemoto, Kogi Satoh, Tetsuya Yamada, The characteristics of hydrogen diffusion and concentration around a crack tip concerned with hydrogen embrittlement, Corrosion Science, 2001, 44, 407-24.
DOI: 10.1016/s0010-938x(01)00095-6
Google Scholar
[6]
H. P. Van Leeuwen, The kinetics of hydrogen embrittlement: a quantitative diffusion model, Engineering Fracture Mechanics, 1974, 6, 141-61.
DOI: 10.1016/0013-7944(74)90053-8
Google Scholar
[7]
A. Turnbull, D. H. Ferriss, H. Anzai, Modeling of hydrogen distribution at a crack tip, Materials Science and Engineering, 1996, 206, 1-13.
DOI: 10.1016/0921-5093(95)09897-6
Google Scholar
[8]
J. Toribio, The role of crack tip strain rate in hydrogen assisted cracking, Corrosion Science, 1997, 39.
DOI: 10.1016/s0010-938x(97)00075-9
Google Scholar
[9]
B. Z. Margolin, V. I. Kostylev, Analysis of biaxial loading effect on fracture toughness of reactor pressure vessel steels, International Journal of Pressure Vessels and Piping, 1998, 75, 589-601.
DOI: 10.1016/s0308-0161(98)00056-8
Google Scholar
[10]
Y. Kim, Y. J. Chao, M. J. Pechersky and M. J. Morgan, On the effect of hydrogen on fracture toughness of steel, International Journal of Fracture, 2005, 134, 339-47.
DOI: 10.1007/s10704-005-1974-7
Google Scholar
[11]
J. O'M. Bockris and P. K. Subramanyan, A thermodynamic analysis of hydrogen in metals in the presence of an applied stress field, Acta Metallurgica, 1971, 19, 1205.
DOI: 10.1016/0001-6160(71)90053-8
Google Scholar
[12]
J. O'M. Bockris, W. Beck, M. A. Genshaw, P. K. Subramanyan, F. S. Williams, The effect of sress on the chemical potential of hydrogen in iron and steel, Acta Metallurgica, 1971, 19.
DOI: 10.1016/0001-6160(71)90054-x
Google Scholar
[13]
H. P. Van Leeuwen, A failure criterion for internal hydrogen embrittlement, Fracture Mechanics, 1997, 9, 291-6.
Google Scholar
[14]
M.A. Guerrero a, C. Betegon, J. Belzunce, Fracture analysis of a pressure vessel made of high strength steel (HSS), Engineering Failure Analysis, article in press, (2007).
DOI: 10.1016/j.engfailanal.2007.06.006
Google Scholar
[15]
Bong-Sang Lee, Min-Chul Kim, Maan-Won Kim, Ji-Hyun Yoon, Jun-Hwa Hong, Master curve techniques to evaluate an irradiation embrittlement of nuclear reactor pressure vessels for long-term operation, International Journal of Pressure Vessels and Piping, manuscript accepted, (2007).
DOI: 10.1016/j.ijpvp.2007.08.005
Google Scholar
[16]
S. N. Choi, J. S. Kim, J. B. Choi, Y.J. Kim, Effect of cladding on the stress intensity factors in the reactor pressure vessel, Nuclear Engineering and Design, 2000, 199, 101-11.
DOI: 10.1016/s0029-5493(99)00059-x
Google Scholar
[17]
S.A. Jenabali Jahromi, M. Najmi, Embrittlement evaluation and lifetime assessment of hydrocracking pressure vessel made of 3Cr-1Mo low-alloy steel, Engineering Failure Analysis, 2007, 14, 164-9.
DOI: 10.1016/j.engfailanal.2005.11.009
Google Scholar
[18]
G. Karzov, B. Margolin, E. Rivkin, Analysis of structure integrity of RPV on the basis of brittle criterion: new approaches, International Journal of Pressure Vessels and Piping, 2004, 81, 651-6.
DOI: 10.1016/j.ijpvp.2004.03.001
Google Scholar
[19]
H. W. Liu, L. Fang, Effects of surface diffusion and resolved shear stress intensity factor on environmentally assisted cracking, Theoretical and Applied Fracture Mechanics, 1996, 25, 31-42.
DOI: 10.1016/0167-8442(96)00004-3
Google Scholar
[20]
C. J. McMahon, Hydrogen-induced intergranular fracture of steels, Engineering Fracture Mechanics, 2001, 68, 773-88.
DOI: 10.1016/s0013-7944(00)00124-7
Google Scholar
[21]
S. Serebrinsky, E. A. Carter, M. Ortiz, A quantum-mechanically informed continuum model of hydrogen embrittlement, Journal of Mechanics and Physics of Solids, 2004, 52, 2403-30.
DOI: 10.1016/j.jmps.2004.02.010
Google Scholar
[22]
Itsuo Ohanaka, Mathematical analysis of solute redistribution during solidification with diffusion in solid phase, 1986, 26, 1048-50.
Google Scholar
[23]
G. Muller, M. Uhlemann, A. Ulbricht, J. Bohmert, Influence of hydrogen on toughness of irradiated reactor pressure vessel steels, Journal of Nuclear Materials, 2006, 359, 114-21.
DOI: 10.1016/j.jnucmat.2006.08.004
Google Scholar
[24]
Nobuhiko Takeichi, Hiroshi Senoh, Tomoyuki Yokota, Hidekazu Tsuruta, Kenjiro Hamada, Hiroyuki T. Takeshita, Hideaki Tanaka, Tetsu Kiyobayashi, Toshio Takano, Nobuhiro Kkuriyama, Hybrid hydrogen storage vessel, a novel high pressure hydrogen storage vessel combined with hydrogen storage material, International Journal of Hydrogen Energy, 2003, 28, 1121-9.
DOI: 10.1016/s0360-3199(02)00216-1
Google Scholar
[25]
Chidambara Ramalingam Aronachalam, Hydrogen charging and internal hydrogen effects on interfacial and fracture properties of metal matrix composites, Department of Material Science and Mechanics 1994, James places, submitted by Michigan University.
Google Scholar
[26]
M. R. Louthan, Hydrogen embrittlement of metals: a primer for the failure analyst materials science and technology, Savannah River National Laboratory, Aiken, South Carolina 29808.
Google Scholar
[27]
U. Krupp, Fatigue crack propagation in metals and alloys: microstructure aspects and modelling concepts, Wiley-VCH Verlag GmbH & Co. KGaA, Germany, (2007).
DOI: 10.1002/9783527610686
Google Scholar
[28]
J. M. Smith and H. C. Van Ness, Introduction to chemical engineering thermodynamics, Mcgraw-Hill International Editions, Fourth Edition, New York, (1916).
Google Scholar
[29]
Molecular thermodynamics of fluid-phase equilibria, J. M. Prausnitz, R. N. Lichtenthaler, E. G. de Azevedo, 3rd Edition, Prentice Hall International Series in the Physical and Chemical Engineering Sciences, November 1, (1998).
Google Scholar
[30]
P. Sofronis, R. M. McMeeking, Numerical analysis of hydrogen transport near a blunting crack tip, Journal of Mechanics and Physics of Solids, 1989, 37.
DOI: 10.1016/0022-5096(89)90002-1
Google Scholar
[31]
Hirokazu Kotake, Royosuke Matsumoto, Shinya Taketomi, Noriyuke Miyazaki, Transient hydrogen diffusion analyses coupled with crack -tip plasticity under cyclic loading, International Journal of Pressure Vessels and Piping, 2008, 85, 540-9.
DOI: 10.1016/j.ijpvp.2008.02.002
Google Scholar
[32]
Maoqiu Wang, Eiji Akiyama, Kaneaki Tsuzaki, Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation, Corrosion Science, 2002, 48, 2189-202.
DOI: 10.1016/j.corsci.2005.07.010
Google Scholar
[33]
D. M. Symons, A comparison of internal hydrogen embrittlement and hydrogen environment embrittlement of X-750, Engineering Fracture Mechanics, 2001, 48.
DOI: 10.1016/s0013-7944(00)00123-5
Google Scholar