[1]
C.P. Yeh, W.X. Zhou and K. Wyatt: The International Society for Hybrid Microelectronics Vol. 19 (1996), p.120.
Google Scholar
[2]
J. Wang, Z. Qian, D. Zou and S. Liu: Trans. on ASME Journal of Electronic Packaging Vol. 120 (1998), p.179.
Google Scholar
[3]
K.H. Teo: IEEE/CMPT Electronics Packaging Technology Conference (1998), p.269.
Google Scholar
[4]
Q. Yao and J. Qu: Trans. on ASME Journal of Electronic Packaging Vol. 121 (1999), p.196.
Google Scholar
[5]
K. -C. Liao and H.H. Tsai: The 4th International Conference on Thermal & Mechanical Simulation and Experiments in Micro-electronics and Micro-systems, Aix-en-Provence, France, March 30 - April 2 (2003).
Google Scholar
[6]
A. Fatemi and D.F. Socie: Fatigue and Fracture of Engineering Materials and Structures Vol. 11 (1988), p.149.
Google Scholar
[7]
D.F. Socie: ASTM STP 1191 (1993; ), p.7.
Google Scholar
[8]
C. -C. Chu: J. Engineering Materials and Tech. Vol. 117 (1995), p.41.
Google Scholar
[9]
J.H. Underwood: ASTM STP 513 (1972), p.59.
Google Scholar
[10]
J.J. McGowan and M. Raymund: ASTM 677 (1979), p.365.
Google Scholar
[11]
I.S. Raju and Jr. J.C. Newman: J. Pressure Vessel Tech. Vol. 102 (1980), p.342.
Google Scholar
[12]
A.S. Kobayashi, A.F. Emery, N. Polvanich, W.J. Love: J. Pressure Vessel Tech. (1997), p.83.
Google Scholar
[13]
N.E. Dowling and J.A. Begley: ASTM STP 590 (1976), p.82.
Google Scholar
[14]
N.E. Dowling: ASTM STP 637 (1977), p.97.
Google Scholar
[15]
M. Zheng and H.W. Liu: J. Engineering Materials and Tech. Vol. 108 (1986), p.201.
Google Scholar
[16]
M.W. Brown and K.J. Miller: Institution of Mechanical Engineers Vol. 187 (1973), p.745.
Google Scholar
[17]
A. Nitta, T. Ogata and K. Kuwabara: Fatigue Fract. Engineering Materials Struct. Vol. 12 (1989), p.77.
Google Scholar
[18]
T. Ogata, A. Nitta and J.J. Blass: ASTM STP 1191 (1993), p.313.
Google Scholar
[19]
Y. Wang and J. Pan: Int. J. Fatigue Vol. 20 (1998), p.775.
Google Scholar
[20]
Y. Wang and J. Pan: Int. J. Solids and Structures Vol. 36 (1999), p.4543.
Google Scholar
[21]
Y. Wang and J. Pan: J. Pressure Vessel Tech. Vol. 123 (2001), p.2.
Google Scholar
[22]
Gurson AL. Continuum theory of ductile rupture by void growth: part I - yield criteria and flow rules for porous ductile media. J. Eng. Mater. Tech. 1977; 99: 2-15.
DOI: 10.2172/7351470
Google Scholar
[23]
V. Tvergaard: Int. J. Fract. Vol. 17 (1981), p.389.
Google Scholar
[24]
O. Richmond and RE. Smelser: Alcoa Technical Center Memorandum (1985).
Google Scholar
[25]
K. -C. Liao, J. Pan and S.C. Tang: Mech. Mater. Vol. 26 (1997), p.213.
Google Scholar
[26]
R. Hill: Roy. Soc. London Proc. Vol. 193A (1948), p.281.
Google Scholar
[27]
R. Hill: Math. Proc. Camb. Phil. Vol. 85 (1979), p.179.
Google Scholar
[28]
H.D. Hibbitt, B.I. Karlsson and E.P. Sorensen: ABAQUS user manual, Version 6. 7 (2007).
Google Scholar
[29]
J.W. Yoon, F. Barlat and R.E. Dick: SAE paper no. 2000-01-0774, Society of Automotive Engineers, Pennsylvania, Warrendale (2000), p.67.
Google Scholar
[30]
H. -M. Huang, J. Pan and S.C. Tang: Int. J. Plast. Vol. 16 (2000), p.611.
Google Scholar