Surface Properties of 316L Austenitic Steel Improved by Simultaneous Diffusion of Titanium and Aluminium

Abstract:

Article Preview

Samples of 316L austenitic steel were submitted to a thermochemical treatment which implies surface diffusion of Al and Ti. The technique of pack cementation with NH4Cl as activator was employed. The powder mixture was made of aluminium, titanium, aluminium oxide and ammonium chloride. The same ratio of Al : Ti = 1 : 5 was used in all experiments. The variables were temperature and time. As a function of these parameters, diffusion layers of different thicknesses were obtained. The samples were analyzed by optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis (EDX), X-ray diffraction and Vickers microhardness trials. All layers were formed by diffusion with reaction and present two zones with different structures and compositions and therefore different properties. The Ti3NiAl2N compound was identified by X-ray diffraction. The presence of this compound in the diffusion coatings increases the superficial hardness of the samples.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Edited by:

Prof. Andreas Öchsner, Prof. Graeme E. Murch, Ali Shokuhfar and Prof. João M.P.Q. Delgado

Pages:

1-7

Citation:

I. M. Britchi et al., "Surface Properties of 316L Austenitic Steel Improved by Simultaneous Diffusion of Titanium and Aluminium", Defect and Diffusion Forum, Vols. 297-301, pp. 1-7, 2010

Online since:

April 2010

Export:

Price:

$38.00

[1] D. H. Kohn: Curr. Opin. Solid State Mater. Sci. Vol. 3 (1998), p.309.

[2] G. L. Winters and M. J. Nutt in: Stainless Steels for Medical and Surgical Applications, edited by West Conshohocken, PA: ASTM International, (2003).

[3] D. C. Hansen: Electrochem. Soc. Interface, Summer (2008), p.31.

[4] M. H. Fathi, M. Salehi, A. Saatchi, V. Mortazavi and S. B. Moosavi: Dent. Mater. Vol. 19 (2003), p.188.

[5] S. Morais, J. P. Sousa, M. H. Fernandes, G. S. Carvalho, J. D. de Brujin and C. A. van Blitterswijk: Biomaterials Vol. 19 (1998), p.999.

[6] L. E. Eiselstein, D. M. Proctor and T. C. Flowers: Mater. Sci. Forum Vol. 539-543 (2007), p.698.

[7] N. R. Babu, S. Manwatkar, K. P. Rao and T. S. S. Kumar: Trends Biomater. Artif. Organs Vol. 17 (2004), p.43.

[8] A. P. Tomsia, G. W. Marshall, E. Saiz, J. M. Gomez-Vega and S. J. Marsall, U.S. Patent 0076528 A1 (2002).

[9] M. Britchi, M. Olteanu, G. Jitianu, M. Branzei, D. Gheorghe and P. Nita: Surf. Eng. Vol. 17 (2001), p.313.

DOI: https://doi.org/10.1179/026708401101517935

[10] M. Britchi, M. Olteanu, G. Jitianu, M. Branzei, D. Gheorghe and P. Nita: Int. J. Mater. Prod. Technol. Vol. 15 (2002), p.446.

[11] M. Britchi, M. Olteanu and N. Ene: Int. J. Mater. Prod. Technol. Vol. 25 (2006), p.267.

[12] M. Britchi, N. Ene, M. Olteanu and C. Radovici: J. Serb. Chem. Soc. Vol. 74 (2009), p.203.

[13] Z. D. Xiang and P. K. Datta: Mater. Sci. Technol. Vol. 22 (10) (2006), p.1177.

[14] T. Weber and M. Schütze: Defect Diffus. Forum Vols. 237-240 (2005), p.922.

[15] M. Zheng and R. A. Rapp: Oxid. Met. Vol. 49 (1998), p.19.

[16] M. Britchi, M. Momirlan and I. Pencea: Int. J. Mater. Prod. Technol. Vol. 13 (1998), p.400.

[17] M. A. Harper and R. A. Rapp: Oxid. Met. Vol. 42 (1994), p.303.

[18] Z. D. Xiang and P. K. Datta: Acta Mater. Vol. 54 (2006), p.4453.

[19] D. M. Miller, S. C. Kung, S. D. Scarberry and R. A. Rapp: Oxid. Met. Vol. 29 (1988), p.239.

[20] B. Huneau, J. J. Ding, P. Rogl, J. Bauer, X. Y. Ding and M. Bohn: J. Solid State Chem. Vol. 155 (2000), p.71.

Fetching data from Crossref.
This may take some time to load.