Heat Transfer Enhancement of Jet Impingement on a Flat Plate Attached by a Porous Medium with a Center Cavity

Abstract:

Article Preview

Jet impingement heat transfer on a target plate covered with a thick porous layer with or without a cylindrical center cavity is experimentally investigated using the transient liquid crystal technique. Based on the results of jet impingement on a bare flat plate, heat transfer enhancement due to the attachment of porous medium is assessed. The varying parameters in the experiments include the nozzle-to-plate distance, jet Reynolds number, jet-to-cavity diameter ratio, and the cavity depth. Results of Nusselt number distribution, stagnation-zone Nusselt number, and averaged Nusselt number over a region of 3 times the hole diameter are documented. Experimental results show that the attachment of the porous layer with a center cavity can either hamper, or effectively enhance the jet impingement heat transfer over a flat plate. The maximum enhancement occurs at jet Reynolds number of 12400 when the cavity is a through hole and the cavity has the same diameter as the jet. The stagnation-zone Nusselt number increases 58.3% and the averaged Nusselt number increases 77.5% at the maximum enhancement condition. On the other hand, the addition of the thick porous layer without a center cavity gave rise to severe adverse effect on jet impingement heat transfer.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Edited by:

Andreas Öchsner, Graeme E. Murch, Ali Shokuhfar and João M.P.Q. Delgado

Pages:

427-432

DOI:

10.4028/www.scientific.net/DDF.297-301.427

Citation:

P. S. Wu et al., "Heat Transfer Enhancement of Jet Impingement on a Flat Plate Attached by a Porous Medium with a Center Cavity", Defect and Diffusion Forum, Vols. 297-301, pp. 427-432, 2010

Online since:

April 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.