Heat Transfer Enhancement of Jet Impingement on a Flat Plate Attached by a Porous Medium with a Center Cavity

Article Preview

Abstract:

Jet impingement heat transfer on a target plate covered with a thick porous layer with or without a cylindrical center cavity is experimentally investigated using the transient liquid crystal technique. Based on the results of jet impingement on a bare flat plate, heat transfer enhancement due to the attachment of porous medium is assessed. The varying parameters in the experiments include the nozzle-to-plate distance, jet Reynolds number, jet-to-cavity diameter ratio, and the cavity depth. Results of Nusselt number distribution, stagnation-zone Nusselt number, and averaged Nusselt number over a region of 3 times the hole diameter are documented. Experimental results show that the attachment of the porous layer with a center cavity can either hamper, or effectively enhance the jet impingement heat transfer over a flat plate. The maximum enhancement occurs at jet Reynolds number of 12400 when the cavity is a through hole and the cavity has the same diameter as the jet. The stagnation-zone Nusselt number increases 58.3% and the averaged Nusselt number increases 77.5% at the maximum enhancement condition. On the other hand, the addition of the thick porous layer without a center cavity gave rise to severe adverse effect on jet impingement heat transfer.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

427-432

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.D. Francis and W.J. Wepfer: Int. J. Heat Mass Transfer Vol. 39, No. 9 (1996), p. (1911).

Google Scholar

[2] S.Y. Kim, M.H. Lee and K. -S. Lee: IEEE Trans. on Components and Packaging Technologies Vol. 28, No. 1 (2005), p.142.

Google Scholar

[3] R.S. Bunker and D.E. Metzger: ASME J. Heat Transfer Vol. 112 (1990), p.451.

Google Scholar

[4] D.E. Metzger and R.S. Bunker: ASME J. Heat Transfer Vol. 112 (1990), p.459.

Google Scholar

[5] M.J.S. de Lemos and C. Fischer: Numerical Heat Transfer, Part A: Applications Vol. 54, Issue 11 (2008), p.1022.

Google Scholar

[6] D. Lytel and B.W. Webb: Int. J. Heat Transfer Vol. 37, no. 12 (1994), p.1687.

Google Scholar

[7] J.W. Baughn and S. Shimizu: ASME J. Heat Transfer Vol. 111 (1989), p.1096.

Google Scholar

[8] D.J. Bizzak and M.K. Chyu: Int. J. Heat and Mass Transfer Vol. 38 (1995), p.267.

Google Scholar

[9] D.E. Metzger, R.S. Bunker, and G. Bosch: J. Turbomachinery Vol. 113 (1991), p.52.

Google Scholar

[10] R.J. Moffat: Experimental Thermal and Fluid Science Vol. 1 (1988), p.3. Case dj/dh Re H/dj Hh/Hp �usz �uavg.

Google Scholar

[1] 1 17900 2 FP 99. 0 53. 2.

Google Scholar

[2] 1 12400 2 FP 81. 4 42. 3.

Google Scholar

[3] 1 8500 2 FP 60. 9 29. 8.

Google Scholar

[4] 1 17900 6 FP 105. 6 45. 6.

Google Scholar

[5] 1 12400 6 FP 63. 7 26. 7.

Google Scholar

[6] 1 8500 6 FP 47. 0 19. 7.

Google Scholar

[7] 1 17900 6 0 19. 8 19. 3.

Google Scholar

[8] 1 12400 6 0 19. 5 19. 0.

Google Scholar

[9] 1 8500 6 0 13. 1 12. 5.

Google Scholar

[10] 1 17900 6 0. 8 118. 8 44. 9.

Google Scholar

[11] 1 12400 6 0. 8 80. 4 42. 4.

Google Scholar

[12] 1 8500 6 0. 8 57. 1 29. 6.

Google Scholar

[13] 1 17900 8 0. 8 119. 9 50. 5.

Google Scholar

[14] 1 17900 10 0. 8 71. 5 33. 7.

Google Scholar

[15] 0. 5 17900 6 0. 8 21. 7 11. 1.

Google Scholar

[16] 2 17900 6 0. 8 96. 4 54. 7.

Google Scholar

[17] 1 17900 6 1 110. 6 58. 4.

Google Scholar

[18] 1 12400 6 1 128. 8 75. 1.

Google Scholar

[19] 1 8500 6 1 86. 8 48. 1 r/dh 0. 0 0. 5 1. 0 1. 5 2. 0 2. 5 3. 0 �u.

Google Scholar

[20] [40] [60] [80] 100 120 140 160 0. 5.

Google Scholar

[1] [2] dj/dh Figure 8 - Effect of jet-to-cavity diameter ratio (Re = 17900, H/dh = 6).

Google Scholar