Analysis of Component Depth Profiles at the Interface of Ti6242 Alloy and SiC, SiN Coatings after High Temperature Oxidation in Air

Article Preview

Abstract:

We have analyzed the interfacial elemental depth profile evolution after high temperature isothermal oxidation of SixCy and SixNy protective coatings deposited by dynamic ion mixing on a Ti6242 alloy (Ti-6Al-2Sn-4Zr-2Mo). Isothermal oxidation tests have been carried out at 600°C during 100 hours in air. We have observed a non-monotonic depth distribution of zirconium in GDOES and SIMS depth profiles after oxidation of SiC/Ti6242 and SiN/Ti6242 and we propose a kinetic model based on rate equations for analyzing the results. It is shown by modeling that a non-monotonic depth profile of zirconium occurs because zirconium from the Ti6242 alloy forms a zirconium oxide compound. As a result, the atomic concentration of zirconium decreases at the interface which induces a diffusion flux of zirconium from the bulk to the interface. This process leads to the increase of the total amount of zirconium at the film interface and thus formation of a non-monotonic depth profile.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

433-438

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Gurappa: Mater. Sci. Eng. A Vol. 356 (2003), p.372.

Google Scholar

[2] M.N. Mungole and N. Singh, G.N. Mathur: Mater. Sci. Technol. Vol. 18 (2002), p.111.

Google Scholar

[3] W. Kaysser: Surf. Eng. Vol. 17 (2001), p.305.

Google Scholar

[4] A. Galerie, M. Caillet, M. Pons, G. Dearneley: Nucl. Instr. Meth. B Vol. 19/20 (1987), p.708.

Google Scholar

[5] K. Baba, R. Hatada, R. Emmerich, B. Enders and G.K. Wolf: Nucl. Instr. Meth. Phys. Res. B Vol. 106 (1995), p.106.

Google Scholar

[6] F. Sibieude, J. Rodriguez and M.T. Clavaguera-Mora: Thin Solid Films Vol. 204 (1991), p.217.

Google Scholar

[7] X. Liu, Y. Yu, Z. Zheng, W. Huang, S. Zough, Z. Jin, M. Chang, S. Xu, S. Taniguchi, T. Shibata and K. Nakamura: Surf. Coat. Technol. Vol. 46 (1991), p.227.

Google Scholar

[8] R.E. Loehman, A.P. Tomsia, J.A. Pask and S.M. Johnson: J. Am. Ceram. Soc. Vol. 73 (1990), p.552.

Google Scholar

[9] D. Monceau and B. Pieraggi: Oxid. Met. Vol. 50 (1998), p.477.

Google Scholar

[10] H. Schmidt, W. Gruber, G. Borchardt, M. Bruns, M. Rudolphi and H. Baumann: Thin Solid Films Vol. 450 (2004), p.346.

DOI: 10.1016/j.tsf.2003.11.274

Google Scholar

[11] J.P. Rivere, L. Pichon, M. Drouet, A. Galdikas and D. Poquillon: Surf. Coat. Tech. Vol. 200 (2006), p.5498.

Google Scholar

[12] Y. Qin, D. Zhang, W. Lu and W. Pan: J. Alloys Comps Vol. 455 (2008), p.369.

Google Scholar

[13] A. Laik, K. Bhanumurthy and G.B. Kale: J. Nucl. Mat. Vol. 305 (2002), p.124.

Google Scholar