Numerical Simulations on the Growth of Thin Oxide Films on Aluminum Substrates

Article Preview

Abstract:

We investigated the oxidation of nanocrystalline aluminum surfaces by using variable charge molecular dynamics at 600 K under three oxygen pressures: 1, 10 and 20 atm. The interaction potential was described by the electrostatic plus (Es+) model that allows dynamical charge transfer among atoms. We mainly focused on the effect of the oxygen pressure on the oxidation kinetic, the chemical composition and the microstructure of the oxide films formed. The results show that oxidation kinetics as well as chemical composition and microstructure depend on the applied oxygen pressure. The oxide film thickness tends to a limiting value equal to ~3 nm. Finally, we obtained a partially crystalline oxide films for all oxygen pressures and we observed that the degree of crystallinity increases with time.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

954-959

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. De Teresa, A. Barthelemy, A. Fert et al.: Science Vol. 286 (1999), p.507.

Google Scholar

[2] E.S. Snow, P.M. Campbell, R.W. Rendell et al.: Semicond. Sci. Tech. Vol. 13 (1998), p. A75.

Google Scholar

[3] A.T.M. van Gogh, S.J. van der Molen, J.W.J. Kerssemakers et al.: Appl. Phys. Lett. Vol. 77 (2000), p.815.

Google Scholar

[4] F.H. Streitz and J.W. Mintmire: Phys. Rev. B Vol. 50 (1994), p.11996.

Google Scholar

[5] F.H. Streitz and J.W. Mintmire: Phys. Rev. B Vol. 60 (1999), p.773.

Google Scholar

[6] T. Campbell, R.K. Kalia, A. Nakano et al.: Phys. Rev. Lett. Vol. 82 (1999), p.4866.

Google Scholar

[7] T.J. Campbell, G. Aral, S. Ogata et al.: Phys. Rev. B Vol. 71 (2005), p.205413.

Google Scholar

[8] A. Hasnaoui, O. Politano, J.M. Salazar et al.: Surf. Sci. Vol. 579 (2005), p.47.

Google Scholar

[9] A. Hasnaoui, O. Politano, J.M. Salazar et al.: Phys. Rev. B Vol. 73 (2006), p.035427.

Google Scholar

[10] L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar et al.: Surf. Sci. Vol. 506 (2002), p.313.

Google Scholar

[11] L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar et al.: Thin Solid Films Vol. 418 (2002), p.89.

Google Scholar

[12] L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar et al.: J. Appl. Phys. Vol. 92 (2002), p.1649.

Google Scholar

[13] P.C. Snijders, L.P.H. Jeurgens and W.G. Sloof: Surf. Sci. Vol. 496 (2002), p.97.

Google Scholar

[14] P.C. Snijders, L.P.H. Jeurgens and W.G. Sloof: Surf. Sci. Vol. 589 (2005), p.98.

Google Scholar

[15] A. Perron, S. Garruchet, O. Politano et al.: submitted to the Journal of Physics and Chemistry of Solids (2009).

Google Scholar

[16] A. Perron, O. Politano, V. Vignal: Phil. Mag. Vol. 87 (2007), p.129.

Google Scholar

[17] A. Perron, O. Politano, V. Vignal: Surface and Interface Analysis Vol. 40 (2008), p.518.

Google Scholar