Conjugate Heat and Mass Transfer in Metal Foams: A Numerical Study for Heat Exchangers Design

Article Preview

Abstract:

This numerical study focuses on the determination of macroscopic (effective) properties from pore scale calculation. These results will be applied to heat exchangers design. The computational domain -representative of heat exchanger section- is a parallelepiped filled with metallic foam, heated on one face and crossed by a forced fluid flow. Conjugate heat transfer and fluid flow are computed using finite volume approach on the actual solid matrix and pore space topology obtained from X-ray tomograms. Calculated heat transfer coefficient and flow law parameters are in good agreement with literature data. An active foam length is defined and measured in order to provide optimal design characteristic for foamed heat exchanger.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

960-965

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Topin, et al.: Adv. Mat. Eng. Vol. 8 (2006), p.890.

Google Scholar

[2] J. Banhart: Prog. Mat. Sci. Vol. 46 (2001), p.559.

Google Scholar

[3] E. Brun, et al.: IMorph : A 3D morphological tool to fully analyse all kind of cellular materials (in Cellmet'08. 2008. Dresden, Allemagne).

Google Scholar

[4] L. Tadrist, et al.: Exp. Therm. Fluid Sci. Vol. 28 (2004), p.193.

Google Scholar

[5] E. Brun, et al.: Adv. Mat. Eng. Vol. 21 (2009), p.452.

Google Scholar

[6] S.Y. Kim, B.H. Kang and J. -H. Kim: Int. J. Heat Mass Transf. Vol. 44 (2001), p.1451.

Google Scholar

[7] J. Vicente, et al.: Thermal conductivity of metallic foam: simulation on real x-ray tomographied porous medium and photothermal experiments (in 13TH International Heat Transfer Conference. 2006. Sydney).

DOI: 10.1615/ihtc13.p5.90

Google Scholar

[8] W.J. Drugan and J.R. Willis: J. Mech. Phys. Solids Vol. 44 (1996), p.497.

Google Scholar

[9] J.P. Bonnet, F. Topin, and L. Tadrist: Transp. Porous Med. Vol. 73 (2008), p.233.

Google Scholar

[10] J.M. Hugo, et al.: Transfert de chaleur dans un canal poreux parcouru par un écoulement gravitaire d'huile : Mesure du coefficient d'échange pariétal (in SFT'09. 2009. Vannes).

Google Scholar

[11] B. Madani, et al.: Mesure du coefficient de transfert de chaleur local paroi-fluide dans un canal à mousse métallique en écoulement liquide et en ébullition (in 12ième JITH. 2005. Tanger, Maroc).

Google Scholar

[12] J.P. Holman: Heat Transfer (9th ed. mechanical engineering, ed. McGraw-hill. 2002, Newyork).

Google Scholar

[13] D. Serret, T. Stamboul and F. Topin: Transferts dans les mousses métalliques : Mesure du coefficient d'échange de chaleur entre phases (in Congrès de la SFT, SFT 07. 2007. Ille des Embiez). DTLM  Ti  T0 / ln Ti  Tw T0  Tw     m.

Google Scholar