Estimation of Coupled Thermo-Physical and Thermo-Mechanical Properties of Porous Thermolabile Ceramic Material Using Hot Distortion Plus® Test

Abstract:

Article Preview

In the paper the thermo-mechanical phenomena which occur in thermal shocked thermolabile porous ceramic material were described. Such materials are applied in foundry industry for mould making and they are characterized the low thermal stability losing its strength above 400°C. In [3] the usefulness of Hot Distortion Plus® to estimate the thermo-physical parameters (apparent thermal conductivity, heat capacity) was discussed. These parameters are necessary in data base of simulation codes which permit to simulate the phenomena in casting-mould system. The aim of these tests is to predict the mould material phenomena influence on castings quality. Parameters applied in these thermo-mechanical models (Young's modulus, Poisson's ratio, Yield stress) and their variations with temperature are not really known for thermal unstable mould material. There is no adapted method in literature and description of such total investigations of both parameters groups: thermo-physical and thermo-mechanical. The author's method called Hot Distortion Plus® consists in acquisition of temperature curves of heated sample of material and correlation with curves of their dilatation. Following the simulation using inverse solution method to reproduce the measured parameters with experiment was applied. The tests were carried out for the new quartz sand bonded by resin (approx. 1%). The specimens (dimensions 114 × 25 × 6mm) from binder-sand mixture were made using special core-box.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Edited by:

Andreas Öchsner, Graeme E. Murch and João M.P.Q. Delgado

Pages:

764-769

DOI:

10.4028/www.scientific.net/DDF.312-315.764

Citation:

Z. Ignaszak et al., "Estimation of Coupled Thermo-Physical and Thermo-Mechanical Properties of Porous Thermolabile Ceramic Material Using Hot Distortion Plus® Test", Defect and Diffusion Forum, Vols. 312-315, pp. 764-769, 2011

Online since:

April 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.