Bulk Diffusion of Homovalent Non-Magnetic Atomic Probes of Titanium and Zirconium in Tungsten Single Crystals

Article Preview

Abstract:

The bulk diffusion of homovalent non-magnetic atomic probes (APs) from the IVB group of the periodic table of elements (PTE) – Ti and Zr in tungsten single crystals was investigated by sec-tioning, using secondary ion mass spectrometry (SIMS). The Arrhenius dependences had the fol-lowing parameters: DWTi - (D0)WTi = (3.00.4 ) x 10-4 m2s-1, enthalpy QWTi = (576 ± 9) kJ/mole; DWZr - (D0)WZr = (2.3  0.6) x 10-4 m2s-1, QWZr = (561 9) kJ/mole. The measured parameters (D0,Q)WTi,Zr of diffusion of Ti and Zr atomic probes (APs) in W are in accord with the empirical correlation: the diffusion coefficients of the substitutional APs coincide with the self-diffusion coefficients in W at (Tm)W – its melting temperature. Enthalpies QWTi,Zr,Hf of the volume diffusion of homovalent non-magnetic APs of the IVB group of periodic table of elements (PTE) - Ti, Zr and Hf increase with the decrease of relaxation volumes of the complexes «vacancy-IVBAP» in W lattice. The energies (E)WvacIVBAP of elastic relaxation of the complexes «vacancy-IVBAP» in W lattice were estimated. Electron contributions EDN to the energies EWvacIVBAP of interaction of the point defects in complexes «vacancy-IVBAP» increase relative to value EWvacIIIBAP of interac-tion of the point defects in complexes «vacancy-IIIBAP» with the growth of d-electrons number in comparison with the complexes «vacancy-IIIBAP».

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 319-320)

Pages:

1-11

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Klemradt, B. Drittler, T. Hoshino, R. Zeller, P. Dederichs, N. Stefanou: Physical Review B, 43 (1991) 9487.

DOI: 10.1103/physrevb.43.9487

Google Scholar

[2] Diffusion in Solid Metals and Alloys, Ed.H. Mehrer, Berlin, Springer-Bornstein, (1990).

Google Scholar

[3] S. Klotsman, G. Tatarinova, A. Timofeev: Defect and Diffusion Forum, 305-306 (2010) 1.

Google Scholar

[4] N. Papanikolaou, Z. Zeller, P.H. Dedwertichs, N. Stefanou: Physcal Review B, 55 (1997) 4157.

Google Scholar

[5] T.R. Mattson, N. Sandberg, R. Armiento, A.E. Mattson: Physical Review B, 89 (2009) 224104.

Google Scholar

[6] J.R. Manning, Diffusion kinetics for atoms in crystals, D. Van Nostrand Comp., (1968).

Google Scholar

[7] N.K. Archipova, S.M. Klotsman, J. Rabovskyi, A. Timofeev: Physics of Metals and Metallography, 43 (1977) 779.

Google Scholar

[8] T. Cherepin, Ion probe, Kiev, ND, (1981).

Google Scholar

[9] S. Klotsman, A. Timofeev: Physics of Metals and Metallography, 83 (1997) 86.

Google Scholar

[10] N. Archipova, S. Klotsman, I. Polikarpova et al.: Physical Review B, 30 (1984) 1788.

Google Scholar

[11] C. Kittel, Introduction to solid state physics, (4th Edition, NY, 1978).

Google Scholar

[12] P.A. Korzhavyi, I. Abrikosov, B. Johanson, A.V. Ruban, H.L. Skriver: Physical Review B, 59 (1999) 11693.

Google Scholar

[13] S. Klotsman, C. Osetrov, A. Timofeev: Physics of Metals and Metallography, 81 (1996) 125.

Google Scholar