Reactive Diffusion at the Contact of a Solid Phase with the Solder Melt

Article Preview

Abstract:

Problems of reactive diffusion at the solid phase and melt contact are studied theoretically. The rate constant is a fundamental parameter characterizing the dissolving rate at a certain configuration of experiment. Relationships between the solid phase dissolving rate, i.e. the solid phase interface boundary movement in the melt, and rates of growth of intermetallic phases in the metal (Cu) are observed. This procedure enables the creation of surface and subsurface layers of regulated thickness in metallic materials by means of reactive diffusion. The main intention was an experimental study of copper dissolving in melts of various solder alloys and the related reactive diffusion. We used Sn, SnCu, SnAgCu, SnZn and SnIn alloys as a solder material. The problems that need to be solved preferentially are emphasized. It concerns especially the determination of the rate constant of dissolving and verifying whether the proposed model equations can be used for this constant determination in cases of cylindrical and planar dissolving. Rapid growth of phases in the metal (Cu) and determination of the thickness of layers with these phases pose considerable time demands to X-ray microanalyses (WDX, EDX, BSE, SEM) of specimens after their long-time heating.

You might also be interested in these eBooks

Info:

[1] B.M. Lepinskich et al.: Diffusion of elements in molten metals of iron group. Moscow, Izd. Nauka (1974).

Google Scholar

[2] Th. Heumann: Mehrphasen Diffusion. in: Diffusion in metallischen Werkstoffen. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1970), pp.129-142.

Google Scholar

[3] M. Kajihara: Kinetic Features of Reactive Diffusion in Binary Systems. in: Bokstein, B.S., Straumal, B.B. Diffusion in Solids – Past, Present and Future. Trans Tech Publications Ltd. Switzerland (2006), pp.91-95.

Google Scholar

[4] P. Gas, C. Bergman, G. Clugnet, P. Barna, A. Kovacs and J. Labar: Reactive Diffusion in Al/Pt Films and the Determination of the Diffusion Coefficients of Al in Amorphous Al2Pt. in: Diffusion in Materials. DIMAT 2000. Ed. Y. Limoge and J.L. Bocquet, Scitec Publications, Switzerland (2001).

DOI: 10.4028/www.scientific.net/ddf.194-199.807

Google Scholar

[5] V.V. Fedorov, E.V. Djomina, T.M. Zasadny, R.I. Koroluk, M.D. Prusakova and N.A. Vinogradova: Effect of Hydrogen on Processes of Reactive Diffusion in a Metal – Protective Coating, System. in: Diffusion in Materials. DIMAT 2000. Ed. Y. Limoge and J.L. Bocquet, Scitec Publications, Switzerland (2001).

DOI: 10.4028/www.scientific.net/ddf.194-199.1105

Google Scholar

[6] A.A. Kodentsov, M.J.H. van Dal, C. Cserháti, A.M. Gusak and F.J.J. van Loo: Pattering in Reactive Diffusion. in: Diffusion in Materials. DIMAT 2000. Ed. Y. Limoge and J.L. Bocquet, Scitec Publications, Switzerland (2001), pp.1491-1501.

DOI: 10.4028/www.scientific.net/ddf.194-199.1491

Google Scholar

[7] V.I. Dybkov: Reaction Diffusion in Binary Solid-Solid, Solid-Liquid and Solid-Gas Systems: Common and Distinctive Features. in: Diffusion in Materials. DIMAT 2000. Ed. Y. Limoge and J.L. Bocquet, Scitec Publications, Switzerland (2001).

DOI: 10.4028/www.scientific.net/ddf.194-199.1503

Google Scholar

[8] C. Bergman, C. Emeric, G. Clugnet and P. Gas: Kinetics of Reactive Diffusion in Al/Co Multilayers. in: Diffusion in Materials. DIMAT 2000. Ed. Y. Limoge and J.L. Bocquet, Scitec Publications, Switzerland (2001), pp.1533-1538.

DOI: 10.4028/www.scientific.net/ddf.194-199.1533

Google Scholar

[9] L.N. Paritskaya, V.V. Bogdanov, Yu.S. Kaganovskii, W. Lojkowski, D. Kolesnikov, and A. Presz: The Kinetics of Cd16Cu6 Intermetallic Growth under Elevated Hydrostatic Pressure. in: Diffusion in Materials. DIMAT 2000. Ed. Y. Limoge and J.L. Bocquet, Scitec Publications, Switzerland (2001).

DOI: 10.4028/www.scientific.net/ddf.194-199.1545

Google Scholar

[10] F.M. d'Heurle, P. Gas, J. Philibert and S. -L. Zhang: On Reactive Diffusion: 1) Kinetics, Growth and Diffusion, 2) Equilibrium? in: Diffusion in Materials. DIMAT 2000. Ed. Y. Limoge and J.L. Bocquet, Scitec Publications, Switzerland (2001).

Google Scholar

[11] S.R. Shatynski, J.P. Hirth and R.A. Rapp: A theory of multiphase binary diffusion. Acta Metallurgica Vol. 24 (1976), pp.1071-1078.

DOI: 10.1016/0001-6160(76)90023-7

Google Scholar

[12] V. Buscaglia and U. Anselmi-Tamburini: On the diffusional growth of compounds with narrow homogeneity range in multiphase binary systems. Acta Materialia Vol. 50 (2002), pp.525-535.

DOI: 10.1016/s1359-6454(01)00367-6

Google Scholar

[13] S.P. Garg, G.B. Kale, R.V. Patil and T. Kundu: Thermodynamic interdiffusion coefficient in binary systems with intermediate phases. Intermetallics Vol. 7 (1999), pp.901-908.

DOI: 10.1016/s0966-9795(98)00139-3

Google Scholar

[14] Y. Adda and J. Philibert: Diffusion dans les métaux. Presse Universitaire, Paris (1966).

Google Scholar

[15] P. Kubíček and L. Mrázek: Diffusion in multiphase systems with non-stationary boundaries I. Czechoslovak Journal of Physics Vol. 48 (1998), pp.57-73.

Google Scholar

[16] P. Kubíček and L. Mrázek: Diffusion in multiphase systems with non-stationary boundaries II. Czechoslovak Journal of Physics Vol. 48 (1998), pp.1049-1062.

Google Scholar

[17] P. Kubíček and L. Mrázek: Diffusion in multiphase systems with non-stationary boundaries III. Czechoslovak Journal of Physics Vol. 49 (1999), pp.1077-1089.

Google Scholar

[18] G.A. Aksel'rud and A.D. Molčanov: Rastvorenie tvěrdych věščestv. Izd. Chimija, Moscow (1977). in Russian.

Google Scholar

[19] K.P. Gurov, B.A. Kartaškin and J.E. Ugaste, Vzaimnaja diffuzija v mnogofaznych metalličeskich sistemach. Nauka, Moskva, 1981. in Russian.

Google Scholar

[20] V.S. Savvin, O.V. Michaljova and A.A. Povzner: Kinetika kontaktnogo plavlenija v nestacionarno-diffuzionnom režime. Rasplavy (2001), pp.44-49. in Russian.

Google Scholar

[21] V.S. Savvin, A.K. Azavi, A.S. Kadochnikova and A.A. Povzner: Investigation of the Phase Composition of the Diffuzion Zone of the Bismuth-Indium System upon Contact Melting. The Physics of Metals and Metallography Vol. 99, (2005).

Google Scholar

[22] V.S. Savvin and A.D. Ajtukajev: Spekanie obrazcov sistem Bi-Tl, Bi-In, Bi-Pb, Hg-In. Neorganičeskie materialy, Tom 40 (2004), No. 2, pp.191-195. in Russian.

DOI: 10.1023/b:inma.0000016089.51649.bc

Google Scholar

[23] V.S. Savvin, O.V. Michaljova and A.A. Povzner: Issledovanie fazovogo sostava diffuzionnoj zony sistemy Pb-Bi pri kontaktnom plavlenii komponentov. Neorganičeskie materialy, Tom 38 (2002), No. 7, pp.826-830. in Russian.

Google Scholar

[24] P. Kubíček and T. Pepřica: Methods and experimental results of a study of diffusion of alloy and deoxidation elements in liquid iron. International Metals Reviews Vol. 28 (1983), pp.131-157.

DOI: 10.1179/imtr.1983.28.1.131

Google Scholar

[25] J. Drápala, P. Kubíček, M. Losertová, J. Vrbický, O. Vlach, K. Barabaszová, and M. Kursa: Determination of diffusion characteristics in binary and ternary systems at the moving interface boundary. ES VŠB – TU Ostrava, Ostrava (2008).

Google Scholar

[26] T.D. Massalski: Binary Alloy Phase Diagrams. Second Edition Plus Updates on CD ROM, ASM International, Metals Park, Ohio (1996).

Google Scholar

[27] S.D. Gercriken and I.J. Dechtjar: Difuzija v metallach i splavach v tvěrdoj faze. Gos. izd. fiz. -mat. lit., Moskva (1960). in Russian.

Google Scholar

[28] P. Kubíček and L. Mrázek: Comparison of Wagner's relations for diffusivity determination… Czechoslovak Journal of Physics Vol. 47 (1997), pp.773-785.

DOI: 10.1023/a:1021194403032

Google Scholar

[29] P. Kubíček: Evaluation of experimental data of diffusion in semiinfinite two-phase systems with non-stationary interphase boundary by means of thermal potentials I. Czechoslovak Journal of Physics Vol. 49 (1999), pp.1653-1668.

Google Scholar

[30] P. Kubíček: Evaluation of experimental data of diffusion in semiinfinite two-phase systems with non-stationary interphase boundary by means of thermal potentials II. Czechoslovak Journal of Physics Vol. 49 (1999), pp.1669-1684.

Google Scholar

[31] J. Drápala, P. Kubíček and O. Vlach: Computer simulation of diffusion processes with moving interface boundary. Mathematics and Computers in Simulation. Vol. 80 (2010), pp.1520-1535.

DOI: 10.1016/j.matcom.2010.01.005

Google Scholar

[32] P. Kubíček and J. Drápala: Diffusion with the moving interface boundary – Analytical solving of the Stefan problem by means of the thermal potential of a double layer. In Abstracts of the International Conference and Exhibition Materials Science & Technology 2006 MS&T'06", Ohio, Cincinnati. 15. -19. 10. 2006, p.157. Full text on CD ROM in Section "Phase Stability, Diffusion, and their Application, Fundamentals and Characterization, Vol. 2 (2006).

Google Scholar

[33] P. Kubíček and L. Mrázek: Diffusion in solid phase with non-stationary interphase boundary. Czechoslovak Journal of Physics Vol. 46 (1996), pp.931-941.

DOI: 10.1007/bf01795142

Google Scholar

[34] J. Drápala, M. Kursa, P. Zlatohlávek, R. Burkovič, S. Lasek, V. Vodárek, B. Smetana et al.: Theoretical and experimental study of phase diagram of low-melting binary and ternary alloys, their preparation and characterization. Final report of the project No. OC 531. 003 (Project COST Materials Action 531 Lead-free Solder Materials, Ostrava, VŠB - TU Ostrava (2007).

Google Scholar

[35] W. Köster, T. Gödecke and D. Heine: Der Aufbau des Systems Kupfer-Indium-Zinn im Bereich von 100 bis 50 At. -% Cu. Zeitschrift für Metallkunde Vol. 63 (1972), p.802–807.

DOI: 10.1515/ijmr-1972-631208

Google Scholar

[36] X.J. Liu, H.S. Liu, I. Ohnuma, R. Kainuma, K. Ishida, S. Itabashi, K. Kameda and K. Yamaguchi: Experimental Determination and Thermodynamic Calculation of the Phase Equilibria in the Cu-In-Sn System. Journal of Electronic Materials Vol. 30 (2001).

DOI: 10.1007/s11664-001-0135-7

Google Scholar

[37] P. Kubíček and J. Drápala: Study of reactive diffusion in the presence of dissolution of copper in the solder melt. Defect and Diffusion Forum. Vol. 297-301 (2010), pp.8-14.

DOI: 10.4028/www.scientific.net/ddf.297-301.8

Google Scholar

[38] J. Drápala, A. Struhařová, D. Petlák, V. Vodárek and P. Kubíček: Reactive diffusion upon planar dissolving of copper in solder melts. Grain Boundary Diffusion, Stresses and Segregation. Ed. By B.S. Bockstein, A.O. Rodin and B.B. Straumal. Special journal issue of Defect and Diffusion Forum, Vol. 312-315 (2011).

DOI: 10.4028/www.scientific.net/ddf.312-315.387

Google Scholar

[39] J. Drápala, P. Jopek, D. Petlák, P. Harcuba and P. Kubíček: Reactive diffusion upon planar dissolving of copper in solder melts. Grain Boundary Diffusion, Stresses and Segregation. Ed. By B.S. Bockstein, A.O. Rodin and B.B. Straumal. Special journal issue of Defect and Diffusion Forum Vol. 309-310 (2011).

DOI: 10.4028/www.scientific.net/ddf.309-310.127

Google Scholar