Original Methods for Diffusion Measurements in Polycrystalline Thin Films

Article Preview

Abstract:

With the development of nanotechnologies, the number of industrial processes dealing with the production of nanostructures or nanoobjects is in constant progress (microelectronics, metallurgy). Thus, knowledge of atom mobility and the understanding of atom redistribution in nanoobjects and during their fabrication have become subjects of increasing importance, since they are key parameters to control nanofabrication. Especially, todays materials can be both composed of nanoobjects as clusters or decorated defects, and contain a large number of interfaces as in nanometer-thick film stacking and buried nanowires or nanoislands. Atom redistribution in this type of materials is quite complex due to the combination of different effects, such as composition and stress, and is still not very well known due to experimental issues. For example, it has been shown that atomic transport in nanocrystalline layers can be several orders of magnitude faster than in microcrystalline layers, though the reason for this mobility increase is still under debate. Effective diffusion in nanocrystalline layers is expected to be highly dependent on interface and grain boundary (GB) diffusion, as well as triple junction diffusion. However, experimental measurements of diffusion coefficients in nanograins, nanograin boundaries, triple junctions, and interfaces, as well as investigations concerning diffusion mechanisms, and defect formation and mobility in these different diffusion paths are today still needed, in order to give a complete picture of nanodiffusion and nanosize effects upon atom transport. In this paper, we present recent studies dealing with diffusion in nanocrystalline materials using original simulations combined with usual 1D composition profile measurements, or using the particular abilities of atom probe tomography (APT) to experimentally characterize interfaces. We present techniques allowing for the simultaneous measurement of grain and GB diffusion coefficients in polycrystals, as well as the measurement of nanograin lattice diffusion and triple junction diffusion. We also show that laser-assisted APT microscopy is the ideal tool to study interface diffusion and nanodiffusion in nanostructures, since it allows the determination of 1D, 2D and 3D atomic distributions that can be analyzed using diffusion analytical solutions or numerical simulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-150

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Mehrer: Diffusion in Solids (Springer-Verlag, Berlin Heidelberg, 2007).

Google Scholar

[2] P. Pichler: Intrinsic Point Defects, Impurities, and their Diffusion in Silicon (Springer-Verlag/Wien New York, Austria, 2004).

Google Scholar

[3] A. Portavoce, P. Gas, I. Berbezier, A. Ronda, J. S. Christensen, A. Yu. Kuznetsov, and B. G. Svensson: Phys. Rev. B Vol. 69 (2004), p.155415.

Google Scholar

[4] N. Rodriguez, A. Portavoce, J. Delalleau, C. Grosjean, V. Serradeil, and C. Girardeaux: Thin Solid Films Vol. 518 (2010), p.5022.

DOI: 10.1016/j.tsf.2010.03.039

Google Scholar

[5] P. Pichler, A. Burenkov, J. Lorenz, C. Kampen and L. Frey: Thin Solid Films Vol. 518 (2010), p.2478.

DOI: 10.1016/j.tsf.2009.09.150

Google Scholar

[6] E.M. Bazizi, A. Pakfar, P.F. Fazzini, F. Cristiano, C. Tavernier, A. Claverie, N. Zographos, C. Zechner, and E. Scheid: Thin Solid Films Vol. 518 (2010), p.2427.

DOI: 10.1016/j.tsf.2009.09.141

Google Scholar

[7] J.A. Sethian and J. Wilkening: J. Comput. Phys. Vol. 193 (2003), p.275.

Google Scholar

[8] M. Pernach and M. Pietrzyk: Comput. Mater. Sci. Vol. 44 (2008), p.783.

Google Scholar

[9] A. Portavoce, I. Blum, L. Chow, J. Bernardini, and D. Mangelinck: Defect and Diffusion Forum Vols. 309-310 (2011), p.63.

DOI: 10.4028/www.scientific.net/ddf.309-310.63

Google Scholar

[10] A. Portavoce, R. Simola, D. Mangelinck, J. Bernardini1, and P. Fornara: Diffusion and Defect Data Vol. 264 (2007), p.33.

DOI: 10.4028/www.scientific.net/ddf.264.33

Google Scholar

[11] A. Portavoce, D. Mangelinck, R. Simola, R. Daineche, and J. Bernardini: Defect and Diffusion Forum Vols. 289-292 (2009), p.329.

DOI: 10.4028/www.scientific.net/ddf.289-292.329

Google Scholar

[12] A. Kikuchi and S. Sugaki: J. Appl. Phys. Vol. 53 (1982), p.3690.

Google Scholar

[13] M. Qin, V. M. C. Poon, and S. C. H. Ho: J. Electrochem. Soc. Vol. 148 (2011), p. G271.

Google Scholar

[14] J. Kedzierski, D. Boyd, P. Ronsheim, S. Zafar, J. Newbury, J. Ott, C. Cabral, Jr., M. Ieong, and W. Haensch, in: IEEE International Electron Devices Meeting - IEDM 2003, South Lake Tahoe, USA, 2003 (Electron Devices Society, New York, 2003).

DOI: 10.1109/iedm.2003.1269288

Google Scholar

[15] I. Blum, A. Portavoce, D. Mangelinck, R. Daineche, K. Hoummada, J.L. Lábár, V. Carron, and C. Perrin: J. Appl. Phys. Vol. 104 (2008), p.114312.

DOI: 10.1063/1.3035836

Google Scholar

[16] I. Blum, A. Portavoce, D. Mangelinck, R. Daineche, K. Hoummada, J.L. Lábár, V. Carron, and J. Bernardini: Microelectronic Engineering Vol. 87 (2010), p.263.

DOI: 10.1016/j.mee.2009.05.020

Google Scholar

[17] F. Nemouchi, D. Mangelinck, C. Bergman, P. Gas, and U. Smith: Appl. Phys. Lett. Vol. 86 (2005), p.041903.

Google Scholar

[18] J. C. Fisher: J. Appl. Phys. Vol. 22 (1951), p.74.

Google Scholar

[19] C. E. Allen, D. L. Beke, H. Bracht, C. M. Bruff, M. B. Dutt, G. Erdélyi, P. Gas, F. M. d'Heurle, G. E. Murch, E. G. Seebauer, B. L. Sharma, and N. A. Stolwijk, in: Diffusion in Semiconductors and Non-Metallic Solids, Landolt-Börnstein-Numerical Data and Functional Relationships in Science and Technology, edited by D. Beke (Springer-Verlag, Berlin, 1998), Vol. 33.

Google Scholar

[20] H. Bakker, H. P. Bonzel, C. M. Bruff, M. A. Dayananda, W. Gust, J. Horváth, I. Kaur, G. V. Kidson, A. D. Le Claire, H. Mehrer, G. E. Murch, G. Neumann, N. Stolica, N. A. Stolwijk, in: Diffusion in Solid Metals and Alloys, Landolt-Börnstein-Numerical Data and Functional Relationships in Science and Technology, edited by H. Mehrer (Springer-Verlag, Berlin, 1990), Vol. 26.

DOI: 10.1007/10390457_20

Google Scholar

[21] Y. Mishin, C. Herzig, J. Bernardini, and W. Gust: International Mat. Rev. Vol. 42 (1997), p.155.

Google Scholar

[22] P. M. Farley, P. B. Griffin, and J. D. Plummer: Rev. of Mod. Phys, Vol. 61 (1989), p.316.

Google Scholar

[23] K. Sakamoto, K. Nishi, T. Yamaji, T. Miyoshi, and S. Ushio: J. Electrochem. Soc. Vol. 132 (1985), p.2457.

Google Scholar

[24] L. G. Harrison: Trans. Faraday Soc. Vol. 57 (1961), p.1191.

Google Scholar

[25] A. Portavoce, L. Chow, and J. Bernardini: Appl. Phys. Lett. Vol. 96 (2010), p.214102.

Google Scholar

[26] Y. Chen and C. A. Schuh: Scr. Mater. Vol. 57 (2007), p.253.

Google Scholar

[27] I.L. Balandin , B.S. Bokstein , V. K Egorov, P.V. Kurkin: NanoStructured Materials. Vol. 8 (1997), p.37.

Google Scholar

[28] A. Portavoce, G. Chai, L. Chow, and J. Bernardini: J. Appl. Phys. Vol. 104 (2008), p.104910.

Google Scholar

[29] G. Hettich, H. Mehrer, and K. Maier: Inst. Phys. Conf. Ser. Vol. 46 (1979), p.500.

Google Scholar

[30] P. Dorner, W. Gust, B. Predel, U. Roll, A. Lodding, and H. Odelius: Philos. Mag. A Vol. 49 (1984), p.557.

Google Scholar

[31] Z. Balogh, Z. Erdélyi, D.L. Beke, A. Portavoce, C. Girardeaux, J. Bernardini, A. Rolland: Appl. Surf. Sci. Vol. 255 (2009), p.4844.

DOI: 10.1016/j.apsusc.2008.12.010

Google Scholar

[32] C. E. Allen, R. Ditchfield, and E. G. Seebauer: Phys. Rev. B Vol. 55 (1997) p.13304.

Google Scholar

[33] D. Mangelinck, K. Hoummada, A. Portavoce, C. Perrin, R. Daineche, M. Descoins, D. J. Larson, and P.H. Clifton: Scripta Materialia Vol. 62 (2010), p.568.

DOI: 10.1016/j.scriptamat.2009.12.044

Google Scholar

[34] C. Perrin, K. Hoummada, I. Blum, A. Portavoce, M. Descoins, D. Mangelinck: Defect and Diffusion Forum Vols. 309-310 (2011), p.161.

DOI: 10.4028/www.scientific.net/ddf.309-310.161

Google Scholar

[35] M.K. Miller: Atom Probe Tomography (Kluwer Academic/Plenum Publisher, New York, 2000).

Google Scholar

[36] R.G. Wilson, F.A. Stevie, and C.W. Magee, Secondary Ion Mass Spectrometry: a Practical Handbook for Depth Profiling and Bulk Impurity Analysis, Wiley, (1989).

Google Scholar

[37] O. Moutanabbir, D. Isheim, D.N. Seidman, Y. Kawamura, and K.M. Itoh: Appl. Phys. Lett. Vol. 98 (2011), p.013111.

Google Scholar

[38] S. Ohsaki, K. Hono, H. Hidaka, and S. Takaki: Scripta Materialia Vol. 52 (2005), p.271.

DOI: 10.1016/j.scriptamat.2004.10.020

Google Scholar

[39] K. Thompson, J.H. Booske, D.J. Larson, and T.F. Kelly: Appl. Phys. Lett. Vol. 87 (2005), p.052108.

Google Scholar

[40] E.A. Marquis, R. Hu, and T. Rousseau: J. Nucl. Mater. Vol. 413 (2011), p.1.

Google Scholar

[41] J. Weidow, and H. -O. Andrén: Acta Mater. Vol. 58 (2010), p.3888.

Google Scholar

[42] S. Duguay, A. Colin, D. Mathiot, P. Morin, and D. Blavette: J. Appl. Phys. Vol. 108 (2010), p.034911.

Google Scholar

[43] M.K. Miller, and M.G. Hetherington: Surf. Sci. Vol. 246 (1991), p.442.

Google Scholar

[44] F. Vurpillot, A. Bostel, and D. Blavette: Appl. Phys. Lett. Vol. 76 (2000), p.3127.

Google Scholar

[45] D. Blavette, P. Duval, L. Letellier, and M. Guttmann: Acta Mater. Vol. 44 (1996), p.4995.

Google Scholar

[46] F. De Geuser, W. Lefebvre, F. Danoix, F. Vurpillot, B. Forbord, and D. Blavette: Surface and Interface Analysis Vol. 39 (2007), p.268.

DOI: 10.1002/sia.2489

Google Scholar

[47] B. Gault, M. Müller, A. La Fontaine, M.P. Moody, A. Shariq, A. Cerezo, S.P. Ringer, and G.D. Smith: J. Appl. Phys. Vol. 108 (2010), p.044904.

DOI: 10.1063/1.3462399

Google Scholar

[48] P. Bas, A. Bostel, B. Deconihout, and D. Blavette: Appl. Surf. Sci. Vol. 87 (1995) p.298.

Google Scholar

[49] B. Bokstein, V. Ivanov, O. Oreshina, A. Peteline, S. Peteline: Mat. Sci. and Eng. Vol. A302 (2001), p.151.

DOI: 10.1016/s0921-5093(00)01367-8

Google Scholar