Hydrogen and Electric Field Effect on Iron Impurities Removal from Molten Zirconium

Article Preview

Abstract:

Hydrogen and iron diffusion coefficients in molten zirconium have been calculated using a molecular dynamics (МD) model. The molecular dynamics method using micro-canonical (NVT) ensemble was used to analyze iron and zirconium diffusion coefficient dependence on electric field intensity and the presence of hydrogen in the zirconium melt. Results obtained are compared to the literature data on impurity removal in plasma-arc zirconium melting in the presence of hydrogen as well as in electron-beam and vacuum-arc melting. The limiting stage of iron removal from the melt is established. The contribution of the electric field to iron removal is estimated. We carried out systematization of the DHMe data for Zr, Nb, and Ta. An Arrhenius equation analysis for DHMe and its extrapolation to the premelting zone taking into account the Gorsky effect was carried out too. The analysis enabled the estimation of DHMe for the temperature interval where experiment encounters difficulties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-183

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Mimura, S.W. Lee, M. Isshiki: Journal of Alloys and Compounds Vol. 221 (1995), p.267.

Google Scholar

[2] K.A. Lindt, A.P. Muhachev, V.V. Shatalov, M.L. Kotsar: Voprosy Atomnoy Nauky i Tehniky (VANT). «Physics of radiation damages and radiation materiology» series. №2, (1999), p.3.

Google Scholar

[3] V.M. Ajaja, P.N. Vjugov, S.D. Lavrinenko, et al: VANT № 6, (2002), p.95.

Google Scholar

[4] V.M. Ajaja, Vjugov P.N., Lavrinenko S.D., et al: VANT № 5, (2000), p.3.

Google Scholar

[5] P.N. Vygov, K. C Goncharov, V.A. Kuzmenko, et al in: Multielement activation analysis with the help of (p, n) reactions. (Kharkov: HFTI AN USSR), 1987, p.10.

Google Scholar

[6] Y. Wang, J. Jiang, Z. Zhang, X. Bian: J. Mater. Sci. Technol., Vol. 17 Suppl. 1, (2001), p.174.

Google Scholar

[7] T. Minegishi, T. Sakurai, S. Morozumis: J. of Materials Science Vol. 26, (1991), p.5473.

Google Scholar

[8] A.A. Vostrjakov, N.A. Vatolin, O.A. Yesin, G.F. Konovalov: Izvestiya Akademii Nauk USSR, Metals, N6, (1965), p.58.

Google Scholar

[9] L. Ver1et: Phys. Rev., Vol. 159, № 1, (1976), p.98.

Google Scholar

[10] X.W. Zhou, H.N.G. Wadly, R.A. Johnson et al: Acta mater., № 49, (2001), p.1005.

Google Scholar

[11] А.К. Rappe, C.J. Cascwit, К. S. Colwe11 et al: J. Am. Chem. Soc, Vol. 114, №25, (1992), p.10024.

Google Scholar

[12] E.A. Pastukhov, N.A. Vatolin, V.L. Lisin, V.M. Denisov, S.V. Kachin in Diffraction studies of structure of high-temperature melts. Russian Academy of Sciences, Ural Division, Institute of Metallurgy, Ekaterinburg, (2003), p.351.

DOI: 10.1023/b:rjac.0000022461.30545.2b

Google Scholar

[13] E.A. Pastukhov, A.A. Vostrjakov, N.I. Sidorov, V.P. Chentsov: Defect and Diffusion Forum Vols. 297-301 (2010) pp.193-196.

DOI: 10.4028/www.scientific.net/ddf.297-301.193

Google Scholar

[14] A.A. Vostriakov, N.I. Sidorov, E.A. Pastukhov, V.L. Lisin: Russian Metallurgy (Metally), Vol. (2010), № 2, p.124.

Google Scholar

[15] A.D. Pogrjabnjak, O.P. Kulmentjeva, V.S. Kshnjakin, et al: Physica I Himiya Pererabotki Materialov №2, (2002), p.40.

Google Scholar

[16] V.P. Kuznetsov, R.G. Loginova, M.I. Ovsjanikov, V.V. Postnikov in Process of growth and structures of monocrystal semiconductors. (Novosibirsk, Nauka, part I), 1968), p.483.

Google Scholar

[17] R.B. McLellan, W.A. Acta Metall: Vol. 21, № 181, (1973), р. 1397.

Google Scholar

[18] E.G. Maksimov, O.A. Pankratov: UFN, Vol. 116, issue 3, (1975), p.385.

Google Scholar

[19] K. Mimura, S.W. Lee, M. Isshiki: Journal of Aloys and Compounds Vol. 221, (1995), p.267.

Google Scholar

[20] W. Luo, K. Ishikawa, K. Aoki: J. Alloys and Compounds Vol. 407 (2006), p.115.

Google Scholar

[21] S.Q. Shi, X.Q. Ma, X.N. Jing, X.H. Guo, L.Q. Chen: The 18 th International Conference on Structural Mechanics in Reactor Technology (SMIRT) (2005), August 7-12, p.186.

Google Scholar

[22] N.L. Peterson: Diffusion in refractory Metals. Research Corporation, March (1960).

Google Scholar

[23] J. Volkl et all: Hydrogen Diffusion in Metals in: A.S. Novik et all: Diffusion in Solids N. Y., (1975), p.232.

Google Scholar

[24] G. Cannelli, F.M. Mazzolai: Appl. Phys. № 1, (1973), p.111.

Google Scholar

[25] E.M. Sacris, N.A. Parlee: Metallurgical Transaction Vol. 1, December (1970), p.3377.

Google Scholar

[26] B.A. Kolbachev, A.A. Ilyin, V.A. Lavrenko et al: Hydride system. Handbook. М. Metallurgiya, (1992), p.352.

Google Scholar

[27] E.A. Pastukhov, A.A. Vostrjakov, N.I. Sidorov, V.P. Chentsov: Defect and Diffusion Forum Vols. 297-301, (2010), p.193.

DOI: 10.4028/www.scientific.net/ddf.297-301.193

Google Scholar

[28] B. Roux, H. Jaffrezic, A. Chevarier et all: Phys. Rev. issue B2, (1995), p.4162.

Google Scholar

[29] A.A. Skovorda, A.V. Spitsin: Pisma v JETF Vol. 89, issue 10, (2009), p.589.

Google Scholar

[30] E.G. Maximov, O.A. Pankratov: Uspehi Fizicheskih Nauk: Vol. 116, issue. 3, (1975), p.385.

Google Scholar

[31] С.P. Flynn, A. M. Stoneham: Phys Rev В1, (1970), p.3966.

Google Scholar

[32] A.A. Shmakov, R.N. Singh: Atomic Energy Vol. 85, №3, (1998), p.675.

Google Scholar

[33] F.V. Filipovski, I.V. Narasenko: Materials Science, Vol. 30, N3, (1994), p.368.

Google Scholar

[34] N.N. Belash, V.R. Tatarinov, N.A. Semenov: VANT, «Physics of radiation damages and radiation materiology» series. №4, (89) (2006), p.123.

Google Scholar