Modeling of Multi-Phase Solid State Reactions-Case of IMC Growth

Article Preview

Abstract:

The formation of intermetallic compounds (IMC) at the solder-substrate interface is required to initiate the metallurgical bond. However, rapid growth of IMCs may degrade joint strength through i) the increased presence of a low toughness phase, ii) the consumption of the solderable surface (void formation) and iii) generation of primary and secondary stresses. Knowledge of mass transport and reaction processes during joint formation and service life are essential for solder system design. The mathematical description of inter-and reactive diffusion in open system presented here is based on Darken method (bi-velocity), involving the different molar volumes in the system and Wagner boundary conditions. It combines the interdiffusion, reactive diffusion and the effective flux constraints to couple processes occurring at different time scales. The rCADiff software serves as a tool to simulate simultaneous growth of the two Cu-Sn IMCs.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 323-325)

Pages:

127-132

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. J. Yurek, J. P. Hirth, R. A. Rapp, Oxidation of Metals, 8 (1974) 265-281.

Google Scholar

[2] A. T. Fromhold, N. Sato, Transport in Non-Stoichiometric Compounds. 1988, Proc. of the First Int'l Conf. on Transport in Non-Stoichiometric Compounds, Mogilany, Poland, pp.81-99.

Google Scholar

[3] U. Gösele and K. N. Tu, J. Appl. Phys. 53 (1982) 3252; K. N. Tu, J. W. Mayer, L. C. Feldman, Electronics Thin Film Science (Macmillan Publ. Comp., NY 1992).

Google Scholar

[4] M. Danielewski, B. Wierzba, Acta Mat., 58 (2010) 6717.

Google Scholar

[5] M. Danielewski, B. Wierzba, Phil. Mag. 89 (2009) 331.

Google Scholar

[6] C. Wagner, Z. Phys. Chem. B21 (1933) 25.

Google Scholar

[7] L. S. Darken, Trans. A.I.M.E. 174 (1948) 184.

Google Scholar

[8] http: /rcadiff. diffusion. pl.

Google Scholar

[9] M. Danielewski, B. Wierzba, A. Gusak, M. Pawelkiewicz, J. Janczak-Rusch, J. of Appl. Phys. 110 (2011) 123705.

Google Scholar

[10] M. Pawelkiewicz, PhD Dissertation, AGH-Univ. of Science and Technology in Krakow, (2011).

Google Scholar

[11] M. Oh Doctoral Dissertation, Lehigh University (1994).

Google Scholar

[12] Z. Mei, A .J. Sunwoo J. W. Morris, Jr. Metallurgical Trans. A, 23A (1992) 857-864.

Google Scholar

[13] M. Onishi, H. Fujibuchi, Trans. JIM , 16 (1975) 539-547.

Google Scholar

[14] B. Chao, S. -H. Chae, X. Zhang, K. H. Lu, M. Ding, J. Im, P. S. Ho, J. Apply. Phys. 100 (2006) 084909-1 to 084909-10.

Google Scholar

[15] E. Starke, H. Wever, Z. Metallkde. 55 (1964) 107-116.

Google Scholar

[16] Z. Lubyova, P. Fellner, K. Matiasovsky, Z. Metallkde. 66 (1975) 179-182.

Google Scholar

[17] K. F. Dreyer, W. K. Neils , R. R. Chronik, D. Grosman, E. J. Cotts, Appl. Phys. Lett. 67 (1995) 2795-2797.

Google Scholar