Numerical Aspects of Electrodiffusion Problem Based on Nernst-Planck and Poisson Equations

Article Preview

Abstract:

Motivation for this work comes from the application of the inverse method to electrochemical systems. The basic process operating in these systems is electrodiffusion, which can be described by the full form of the Nernst-Planck and Poisson equations. No simplification like electroneutrality assumption is used. Numerical procedure based on the method of lines (MLs) for time dependent electrodiffusion transport is presented with any number of ionic species. The resulting system of ODEs is effectively solved by employing different integrators (Radau IIA, Rosenbrock, SEULEX). Selected electrochemical systems (liquid junction, bi-ionic case, ion selective electrodes (ISE)) are treated. Performance of the integrators is compared.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 323-325)

Pages:

81-86

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Cohen, J. Cooley; Biophys. J., 1965, 5, 145-162.

Google Scholar

[2] H. Chang, E. Jaffé; J. Chem. Phys., 1952, 20, 1071-1077.

Google Scholar

[3] T. R. Brumleve, R. P. Buck; J. Electroanal. Chem., 1978, 90, 1-31.

Google Scholar

[4] T. Sokalski, P. Lingenfelter, A. Lewenstam; J. Phys. Chem. B, 2003, 107, 2443-2452.

Google Scholar

[5] D. Britz, Digital Simulations in Electrochemistry, Springer-Verlag Berlin Heidelberg (2005).

Google Scholar

[6] W. E. Schiesser; The Numerical Method of Lines, Academic Press, San Diego, (1991).

Google Scholar

[7] R. Filipek; Modelling of diffusion in multi-component systems, in Polish Ceramic Bulletin, edited by R. Pampuch; and L. Stoch , The Polish Ceramic Society, Kraków, (2005).

Google Scholar

[8] V. M. Volgin, A. D. Davydov; J. Electroanal. Chem., 2007, 600, 171-179.

Google Scholar

[9] E. Hairer, G. Wanner; J. Comput. Appl. Math., 1999, 111, 93-111. ].

Google Scholar

[10] L. K. Bieniasz; J. Electroanal. Chem., 1999, 469, 97-115.

Google Scholar

[11] E. Hairer, G. Wanner; Solving Ordinary Differential Equations II, Springer (2002).

Google Scholar

[12] W. H. Nernst; Z. Phys. Chem., 1889, 4, 165.

Google Scholar

[13] M. Planck; Ann. Phys. Chem., 1890, 39, 161-186.

Google Scholar

[14] M. Planck; Ann. Phys. Chem., 1890, 40, 561.

Google Scholar

[15] W. E. Morf; The Principles of Ion-Selective Electrodes and of Membrane Transport; Akademiai Kiado: Budapest (1981).

Google Scholar

[16] M. J. Dole; Am. Chem. Soc., 1931, 53, 4260-4280.

Google Scholar

[17] B. P. Nikolskii; Acta Phys. -Chim. USSR, 1937, 7, 597-610.

Google Scholar

[18] O. K. Stefanova, M. M. Shultz, E. A. Materova, B. P. Nikolskii; Viest. Leningr. Univ., 1963, 4, 93.

Google Scholar

[19] M. M. Shultz, O. K. Stefanova; Viest. Leningr. Univ., 1967, 6, 103.

Google Scholar

[20] F. Conti, G. Eisenman; Biophys. J., 1965, 5, 247-256.

Google Scholar

[21] F. Conti, G. Eisenman; G. Biophys. J., 1965, 5, 511- 530.

Google Scholar

[22] IUPAC; Pure Appl. Chem., 1976, 48, 129-132.

Google Scholar

[23] IUPAC; Pure Appl. Chem., 1994, 66, 2527-2536.

Google Scholar