Diffusion of Oxygen and Nitrogen in the Ti-15Mo Alloy Used for Biomedical Applications

Article Preview

Abstract:

The Ti-15Mo alloy is a promising material for use as a biomaterial because of its excellent corrosion resistance and its good combination of mechanical properties, such as fatigue, hardness, and wears resistance. This alloy has a body-centered predominantly cubic crystalline structure and the addition of interstitial atoms, such as oxygen and nitrogen, strongly alters its mechanical properties. Mechanical spectroscopy is a powerful tool to study the interaction of interstitial elements with the matrix metal or substitutional solutes, providing information such as the distribution and the concentration of interstitial elements. The objective of this paper is to study of the effects of heavy interstitial elements, such as oxygen and nitrogen, on the anelastic properties of the Ti-15Mo alloy by using mechanical spectroscopy measurements. In this study, the diffusion coefficients, pre-exponential factors, and activation energies were calculated for the oxygen in the Ti-15Mo alloy.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 326-328)

Pages:

696-701

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Leyens and M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications (Wiley-VCH, New York 2005).

Google Scholar

[2] W. F. Ho, C. P. Ju and J. H. Chern Lin: Biomaterials Vol. 20 (1999), p.2115.

Google Scholar

[3] N. T. C. Oliveira, G. Aleixo, R. Caram and A. C. Guastaldi: Materials Science and Engineering A Vol. 452-453 (2007), p.727.

Google Scholar

[4] ASTM: Standard specification for wrought titanium-15 molybdenum alloy for surgical implant application (ASTM, Philadelphia (USA) 2008).

Google Scholar

[5] J. L. Snoek: Physica Vol. 8 (1941), p.711.

Google Scholar

[6] A. S. Nowick and B. S. Berry: Anelastic Relaxation in Crystalline Solids (Academic Press, New York 1972).

Google Scholar

[7] L. H. Almeida, T. C. Niemeyer, K. C. C. Pires, C. R. Grandini, C. A. F. Pintão and O. Florêncio: Materials Science and Engineering A Vol. 370 (2004), p.96.

Google Scholar

[8] C. R. Grandini, L. H. Almeida, R. A. Nogueira and T. C. Niemeyer: Defect and Diffusion Forum Vol. 283-286 (2009 ), p.30.

Google Scholar

[9] R. Nogueira, C. Grandini and A. Claro: Journal of Materials Science Vol. 43 (2008), p.5977.

Google Scholar

[10] H. Lu, C. Li, F. Yin, Q. Fang and O. Umezawa: Materials Science and Engineering: A Vol. 528 (2011), p.3358.

Google Scholar

[11] J. R. S. Martins Júnior, R. A. Nogueira, R. O. d. Araújo, T. A. G. Donato, V. E. Arana-Chavez, A. P. R. A. Claro, J. C. S. Moraes, M. A. R. Buzalaf and C. R. Grandini: Materials Research Vol. 14 (2011), p.107.

DOI: 10.1590/s1516-14392011005000013

Google Scholar

[12] C. R. Grandini: Revista Brasileira de Aplicações de Vácuo Vol. 21 (2002), p.13.

Google Scholar

[13] M. Weller, G. Y. Li, J. X. Zhang, T. S. Kê and J. Diehl: Acta Metallurgica Vol. 29 (1981), p.1047.

Google Scholar

[14] C. R. Grandini, E. H. Kamimura, J. R. S. M. Júnior, H. R. Z. Sandim and O. Florêncio: Defect and Diffusion Forum Vol. 283-286 (2009), p.38.

DOI: 10.4028/www.scientific.net/ddf.283-286.38

Google Scholar

[15] A. Puskar: Internal Friction of Materials (Cambridge International Science Publishing, Cambridge 2001).

Google Scholar